K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔBMC có BM=BC

nên ΔBMC cân tại B

mà \(\widehat{MBC}=60^0\)

nên ΔBMC đều

c: Xét ΔOBM và ΔOCM có 

OB=OC

OM chung

BM=CM

Do đó: ΔOBM=ΔOCM

Suy ra: \(\widehat{OBM}=\widehat{OCM}=90^0\)

hay MC là tiếp tuyến của (O)

a) Xét (O) có 

ΔABC nội tiếp đường tròn(A,B,C∈(O))

AB là đường kính(gt)

Do đó: ΔABC vuông tại C(Định lí)

b) Ta có: \(\widehat{ABC}+\widehat{CBM}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

\(\Leftrightarrow\widehat{CBM}+30^0=90^0\)

hay \(\widehat{CBM}=60^0\)

Xét ΔBMC có BM=BC(gt)

nên ΔBMC cân tại B(Định nghĩa tam giác cân)

Xét ΔBMC cân tại B có \(\widehat{CBM}=60^0\)(cmt)

nên ΔBMC đều(Dấu hiệu nhận biết tam giác đều)

c) Xét ΔOBM và ΔOCM có 

OB=OC(=R)

OM chung

BM=CM(ΔBMC đều)

Do đó: ΔOBM=ΔOCM(c-c-c)

Suy ra: \(\widehat{OBM}=\widehat{OCM}\)(hai góc tương ứng)

mà \(\widehat{OBM}=90^0\left(gt\right)\)

nên \(\widehat{OCM}=90^0\)

hay OC⊥CM tại C

Xét (O) có 

OC⊥CM tại C(cmt)

OC là bán kính(C∈(O))

Do đó: CM là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

 

24 tháng 9 2017

a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO

b,  O A = O F 2 + A F 2 = 5 R 3 =>  cos D A B ^ = A F A O = 4 5

c, ∆AMO:∆ADB(g.g) =>  D M A M = O B O A

mà M O D ^ = O D B ^ = O D M ^ => DM = OM

=>  D B D M = D B O M = A D A M . Xét vế trái  B D D M - D M A M = A D - D M A M = 1

d,  D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4

=>  S O M D B = 13 R 2 8

S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π

a: Xét ΔMAO và ΔMCO có

MA=MC

AO=CO

MO chung

=>ΔMAO=ΔMCO

=>góc MCO=90 độ

góc MAO+góc MCO=180 độ

=>MAOC nội tiếp đường tròn đường kính MO

=>I là trung điểm của MO

b: góc MCO=90 độ

=>MC là tiếp tuyến của (O)

Xét ΔMCD và ΔMBC có

góc MCD=góc MBC

góc CMD chung

=>ΔMCD đồng dạng với ΔMBC

=>MC/MB=MD/MC

=>MC^2=MB*MD

15 tháng 11 2015

c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.

Vì MK vuông góc AB => MK // AC // BD

EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)

Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.

\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)

=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.

 

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: OC là tia phân giác của \(\widehat{AOM}\)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: OD là tia phân giác của \(\widehat{BOM}\)

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

hay \(\widehat{COD}=90^0\)