K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

21 tháng 3 2016

1. ta có: góc MAC = 900 (MA vuong góc AC)

    góc MDC = 900 (MD vuong góc DC)

    xét tứ giác ACDM co:

    Góc MAC + góc MDC =90+90= 1800

tứ giác ACDM nội tiếp đường tròn ( tổng 2 góc đối bằng 1800) 

2. ta có: góc ADB = 90 (góc nội tiếp chắn nửa đường tròn)

 tam giác ADM vuông tại D

 Góc DAB + DBA = 90

     góc MAB = CMD ( 2 góc nội tiếp chắn nửa đường tròn)

     góc DBA = DNC ( 2 góc nội tiếp chắn nửa đường tròn)

     Góc CMD + góc DNC = 900

   góc MNC = 900                         Tam giác MNC vuông tại N         

29 tháng 5 2017

I A B O H D E C C'

  1. Vì \(\Delta ADC\)nội tiếp đường tròn đường kính AO \(\Rightarrow\widehat{ADO}=90^O\Rightarrow OD⊥AC\left(1\right)\)mà \(\Delta ABC\)nội tiếp đường tròn (O) \(\Rightarrow\widehat{ACB}=90^O\Rightarrow BC⊥AC\left(2\right)\)từ 1 và 2 có \(OD\downarrow\uparrow BC\)Mà O là trung điểm BC thì D sẽ phải là trung điểm AC => AD = DC
  2. do \(OH⊥BC\Rightarrow\widehat{CHO}=90^0\left(3\right)\)Mà \(\widehat{ODC}=90^0\left(4\right)\)TỪ 3 và 4 có D và H nhìn OC dưới cùng một góc vuông nên DOHC nội tiếp đường tròn đường kính OC
  3. Vì \(OA=OB=OC=\frac{AB}{2}=3,HB=2OH\Rightarrow HB=\frac{2}{3}OB=\frac{2.3}{3}=2\).Theo hệ thức lượng trong tam giác vuông \(\Delta BCA\)có \(BC=\sqrt{HB.AB}=\sqrt{2.6}=\sqrt{12}\)Và HA=AB-HB=6-2=4 => \(AC=\sqrt{AH.AB}=\sqrt{4.6}=2\sqrt{6}\Rightarrow DC=\frac{AC}{2}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)Xét Vuông \(\Delta DCB\)có:\(BD^2=DC^2+BC^2=6+12=18\),\(ID=IO=\frac{OA}{2}=\frac{3}{2}\),\(IB=IO+OB=\frac{3}{2}+3=\frac{9}{4}\)ta có :\(ID^2+BD^2=\frac{9}{4}+18=\frac{81}{4}=IB^2\)Vậy theo hệ thức lượng trong tam giác vuông có \(\Delta IDB\)Vuông tại D \(\Rightarrow ID⊥BD\)Mà ID là bán kính của (I) => BD là tiếp tuyến của (I)
17 tháng 11 2017

Bạn kia làm đúng rồiV^V

17 tháng 3 2019

ae giúp tôi câu d nhá

8 tháng 6 2019

bn vô hoc 24h.vn hỏi nha 

~ Hok tốt ~
#JH

Cho nửa đường tròn tâm O đường kính BC và điểm A trên nửa đường tròn O (A khác B,C). Hạ AH vuông góc với BC (H thuộc BC). I,K lần lượt là đối xứng với H qua AB, AC.Đường thẳng IK va tia CA cắt tiếp tuyến kẻ từ B của O lần lượt tại M,N. GỌi E là giao điểm của IH và AB, F là giao điểm KH với ACa) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O)b) Chứng minh: 1/(BH^2) = 1/(AB^2) + 1/(AN)^2c) Chứng...
Đọc tiếp

Cho nửa đường tròn tâm O đường kính BC và điểm A trên nửa đường tròn O (A khác B,C). Hạ AH vuông góc với BC (H thuộc BC). I,K lần lượt là đối xứng với H qua AB, AC.Đường thẳng IK va tia CA cắt tiếp tuyến kẻ từ B của O lần lượt tại M,N. GỌi E là giao điểm của IH và AB, F là giao điểm KH với AC
a) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O)
b) Chứng minh: 1/(BH^2) = 1/(AB^2) + 1/(AN)^2
c) Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
d) Xác định vị trí điểm A trên nửa đường tròn để diện tích tứ giác BIKC lớn nhất
e) Chứng minh: BE.CF.BC =  (AH)^3
f) Tiếp tuyến tại C của đường tròn ( O ) cắt IK tại P.Chứng minh: NO ⊥ PB
g) Chứng minh: AO ⊥EF
h) Q, R lần lượt là giao điểm của OM, OP với AB, AC. Xác định tâm và tính bán kính đường tròn ngoại tiếp tứ giác MP RQ biết ∠ACB = 30 độ.

0