Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AM,AC là tiếp tuyến
Do đó: AM=AC và OA là tia phân giác của \(\widehat{MOC}\)
=>\(\widehat{MOC}=2\cdot\widehat{MOA}\)
Xét (O) có
BM,BD là tiếp tuyến
Do đó: BM=BD và OB là phân giác của \(\widehat{MOD}\)
=>\(\widehat{MOD}=2\cdot\widehat{MOB}\)
\(\widehat{MOC}+\widehat{MOD}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOA}+2\cdot\widehat{MOB}=180^0\)
=>\(2\left(\widehat{MOA}+\widehat{MOB}\right)=180^0\)
=>\(\widehat{MOA}+\widehat{MOB}=\dfrac{180^0}{2}=90^0\)
=>\(\widehat{AOB}=90^0\)
b: AB=AM+BM
mà AM=AC và BM=BD
nên AB=AC+BD
c: Xét ΔOAB vuông tại O có OM là đường cao
nên \(AM\cdot MB=OM^2\)
=>\(AC\cdot BD=R^2\) không đổi khi M di chuyển trên (O)
góc CID=1/2*180=90 độ
=>CI vuông góc HD
góc CND=1/2*180=90 độ
=>DN vuông góc CH
Vì góc HNM+góc HIM=180 độ
nên HNMI nội tiếp
Xét ΔGCD vuông tại C có CN là đường cao
nên CN^2=NG*ND
Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:
- MA là tia phân giác của góc HMC
Vậy C, M, D thẳng hàng.
Xét tứ giác CPEO có:
∠(PCO) = ∠(PEO) = 90 0 (gt)
⇒ ∠(PCO) + ∠(PEO) = 180 0
⇒ Tứ giác CPEO là tứ giác nội tiếp
Xét tứ giác OEQD có:
∠(OEQ) = ∠(ODQ) = 90 0 (gt)
⇒ ∠(OEQ) + ∠(ODQ) = 180 0
⇒ Tứ giác OEQD là tứ giác nội tiếp
Tôi cũng có bài khó giống ý hệt bạn,vậy bạn có hướng làm chưa
a: Xét (O) có
DC,DA là tiếp tuyến
=>DC=DA và OD là phân giác của góc AOC(1)
Xét (O) có
EC,EB là tiếp tuyến
=>EC=EB và OE là phân giác của góc BOC(2)
Từ (1), (2) suy ra:
góc DOE=1/2(góc COA+góc COB)
=1/2*180=90 độ
b: DC+CE=DE
DC=DA
EB=EC
Do đó: DA+EB=DE
c: Xét ΔDOE vuông tại O có OC là đường cao
nên CD*CE=CO^2
=>CD*CE=R^2 không đổi
d: Sửa đề; Đường kính DE
Gọi K là trung điểm của DE
ΔDOE vuông tại O
=>O nằm trên đường tròn đường kính DE
=>O nằm trên (K)
Xét hình thang ADEB có
K,O lần lượt là trung điểm của DE,AB
=>KO là đường trung bình
=>KO//AD//EB
=>KO vuông góc AB
Xét (K) có
KO là bán kính
AB vuông góc KO tại O
Do đó: AB là tiếp tuyến của (K)