Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Quá lực!!!)
E N A B C D O H L
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
A B C O D E S F N M I
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
B C A D G E F H M O N P S T
1) +) Xét đường tròn (AD): ^AED = ^AFD = 900 (Các góc nội tiếp chắn nửa đường tròn)
Áp dụng hệ thức lượng trong tam giác vuông: BD2 = BE.BA; CD2 = CF.CA => (BD.CD)2 = AB.AC.BE.CF
Hay AD4 = AD.BC.BE.CF => AD3 = BC.BE.CF => \(\frac{AD^3}{BE.CF}=BC=2R\)
+) Chứng minh H,E,F thẳng hàng ?
Ta có: AE.AB = AF.AC (=AD2) => Tứ giác BEFC nội tiếp => ^CBE = ^AFE = ^EGH (Do tứ giác AGEF nội tiếp)
=> Tứ giác BEGH nội tiếp => ^GEH = ^GBH = ^GAF. Mà ^GAF + ^GEF = 1800
Nên ^GEH + ^GEF = 1800 => 3 điểm H,E,F thẳng hàng (đpcm).
2) Ta thấy tứ giác BEGH và BEFC nội tiếp => AG.AH = AE.AB = AF.AC => Tứ giác GFCH nội tiếp
Theo ĐL Ptolemy cho tứ giác GFCH nội tiếp: FG.CH + GH.CF = CG.HF (đpcm).
3) Gọi S,T lần lượt là hình chiếu của N,P trên BC.
Xét đường tròn (P) có: ^ACM = 1/2.Sđ(AM = 900 - ^PMA => ^PMA = 900 - ^ACB.
Tương tự: ^NMA = 900 - ^ABC. Suy ra: ^PMA + ^NMA = 1800 - (^ABC + ^ACB) = 900 => ^PMN = 900
Từu đó dễ có: \(\Delta\)NSM ~ \(\Delta\)MTP (g.g) => NS.PT = MS.MT (*)
Xét \(\Delta\)MNP: ^PMN = 900 => \(S_{MNP}=\frac{MN.MP}{2}=\frac{\sqrt{\left(NS^2+MS^2\right)\left(PT^2+MT^2\right)}}{2}\)(ĐL Pytagore)
Áp dụng BĐT Bunhiacopsky: \(S_{MNP}\ge\frac{NS.PT+MS.MT}{2}=MS.MT=\frac{1}{4}BM.CM\)(Dựa vào (*) )
Vậy Min SMNP = 1/4.BM.CM = const (Vì M cố định). Đạt được khi A là trung điểm cung BC.