Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OBME có
\(\widehat{OBM}+\widehat{OEM}=180^0\)
Do đó: OBME là tứ giác nội tiếp
(Quá lực!!!)
E N A B C D O H L
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
a: Sửa đề: OE\(\perp\)AN
Xét tứ giác OBME có \(\widehat{OBM}+\widehat{OEM}=90^0+90^0=180^0\)
=>OBME là tứ giác nội tiếp
=>O,B,M,E cùng thuộc một đường tròn
b: Ta có: ΔOAN cân tại O
mà OE là đường cao
nên OE là phân giác của góc AON
=>OK là phân giác của góc AON
Xét ΔONK và ΔOAK có
ON=OA
\(\widehat{NOK}=\widehat{AOK}\)
OK chung
Do đó: ΔONK=ΔOAK
=>\(\widehat{OAK}=\widehat{ONK}\)
mà \(\widehat{ONK}=90^0\)
nên \(\widehat{OAK}=90^0\)
=>KA là tiếp tuyến của (O)