Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài làm
a, gọi H là tiếp điểm của tiếp tuyến MN
theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M
⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)
theo giả thuyết 2 tiếp tuyến HN cắt BN tại N
⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)
nên ta có: MN=HM=HN=\(\dfrac{1}{2}\)(AOH =HON)=90 độ
vậy góc MON=90 đọ và là tâm giác vuông tại O đường cao OH
b,theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M
⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)
theo giả thuyết 2 tiếp tuyến HN cắt BN tại N
⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)
Theo hệ thức lượng trong tam giác vuông:
Vì vậy =\(R^2\)
Theo tính chất tiếp tuyến, ta có:
Ax ⊥ AB
By ⊥ AB
Suy ra: Ax // By hay AC // BD
Suy ra tứ giác ABDC là hình thang
Gọi I là trung điểm của CD
Khi đó OI là đường trung bình của hình thang ABDC
Suy ra: OI // AC ⇒ OI ⊥ AB
Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)
Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.
Ta có: MA = MI (tính chất hai tiếp tuyến cắt nhau)
NB = NI (tính chất hai tiếp tuyến cắt nhau)
Mà: MN = MI + IN
Suy ra: MN = AM + BN
Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)
Theo hệ thức lượng trong tam giác vuông, ta có:
O I 2 = MI.NI
Mà: MI = MA, NI = NB (chứng minh trên)
Suy ra : AM.BN = O I 2 = R 2
Chu vi hình thang ABDC bằng: AB + 2CD (chứng minh trên)
Suy ra: 14 = 4 + 2.CD ⇒ CD = 5 (cm)
Hay CM + DM = 5 ⇒ DM = 5 – CM (1)
Tam giác COD vuông tại O có OM ⊥ CD
Theo hệ thức lượng trong tam giác vuông, ta có:
O M 2 = CM.DM ⇔ 2 2 = CM.DM ⇔ 4 = CM.DM (2)
Thay (1) vào (2) ta có: CM.(5 – CM) = 4
⇔ 5CM – C M 2 – 4 = 0 ⇔ 4CM – C M 2 + CM – 4 = 0
⇔ CM(4 – CM) + (CM – 4) = 0 ⇔ CM(4 – CM) – (4 – CM) = 0
⇔ (CM – 1)(4 – CM) = 0 ⇔ CM – 1 = 0 hoặc 4 – CM = 0
⇔ CM = 1 hoặc CM = 4
Vì CM = CA (chứng minh trên) nên AC = 1 (cm) hoặc AC = 4 (cm)
Vậy điểm C cách điểm A 1cm hoặc 4cm thì hình thang ABDC có chu vi bằng 14.
bạn tự vẽ hình giúp mik nha
a) áp dụng t/c 2 tiếp tuyến cắt nhau ta có
OM là tia phân giác \(\widehat{AOI}\)
ON là tpg \(\widehat{IOB}\)
mà:\(\widehat{AOI}+\widehat{BOI}=180^o\)\(\Rightarrow OM\perp ON\)(t/c 2 góc kề bù)
vậy \(\widehat{MON}=90^o\)
b)từ t/c 2 tiếp tuyến cắt nhau ta có
MA=MI;BN=NI
\(\Rightarrow\)AM+BN=MI+NI=MN9(đpcm)
c)ta có:AM.BN=MI.NI(1)
xét \(\Delta MON\) vuông tại O có
MI.NI(đlý)=\(OI^2=R^2\)(2)
từ (1) và (2)\(\Rightarrow AM.BN=R^2\)
cho tam giác ABC vuông tại A. Vẽ các đường tròn O và i đi qua A và tiếp xúc với BC tại các điểm B và C. Gọi M là trung điểm của BC. Chứng Minh
a) Các đường tròn O và i tiếp xúc với nhau
b) AM là tiếp tuyến chung của hai đường tròn O và i
c) tam giác OMI vuông
d) BC là tiếp tuyến của đường tròn ngoại tiếp tam giác OMI.