K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

Góc với đường tròn

a) Ta có: \(\widehat{OAM}=\widehat{OCM}=90^o\) ( MA và MC là các tiếp tuyến của (O))

\(\Rightarrow\widehat{OAM}+\widehat{OCM}=180^o\)

\(\widehat{OAM}\)\(\widehat{OCM}\) đối nhau

Nên tứ giác AMCO nội tiếp

Ta lại có: OA = OC = R \(\Rightarrow\Delta AOC\) cân tại O (1)

Mà OM là phân giác của \(\widehat{AOC}\) ( MA và MC là tiếp tuyến) (2)

Từ (1), (2) \(\Rightarrow OM\) cũng là đường cao của \(\Delta AOC\)

\(\Rightarrow OM\perp AC\)

\(\Rightarrow\widehat{AEM}=90^o\) (3)

Mặt khác \(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn (O))

\(\Rightarrow\widehat{MDA}=90^o\) (4)

Mà D và E cùng nhìn cạnh MA (5)

Từ (3), (4), (5) \(\Rightarrow\) Tứ giác AMDE nội tiếp (6)

b) Từ (6) \(\Rightarrow\widehat{EDB}=\widehat{EAM}\) (góc ngoài) (7)

\(\widehat{EAM}=\widehat{EOA}\) (cùng phụ với \(\widehat{EAO}\)) (8)

Từ (7), (8) \(\Rightarrow\) \(\widehat{EDB}=\widehat{EOA}\)

Nên tứ giác OEDB nội tiếp

\(\Rightarrow\widehat{EOD}=\widehat{DBE}\)

Hay \(\widehat{MOD}=\widehat{MBE}\) (9)

\(\widehat{DME}\) là góc chung của \(\Delta MDO\)\(\Delta MEB\) (10)

Từ (9), (10) \(\Rightarrow\Delta MDO\sim\Delta MEB\) (G - G)

c) Ta có: \(\left\{{}\begin{matrix}CH\perp AB\left(gt\right)\left(11\right)\\MA\perp AB\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow CH\) // MA (12)

\(\Rightarrow\widehat{ECI}=\widehat{EAM}\) (13)

Từ (7), (13) \(\Rightarrow\widehat{EDB}=\widehat{ECI}\) hay \(\widehat{EDI}=\widehat{ECI}\) (14)

Mà D và C cùng nhìn cạnh EI (15)

Từ (14), (15) \(\Rightarrow\) Tứ giác EDCI nội tiếp

\(\Rightarrow\widehat{DCE}=\widehat{DIE}\) (góc nội tiếp cùng chắn \(\stackrel\frown{ED}\) của đường tròn ngoại tiếp EDCI) (16)

\(\widehat{DCA}=\widehat{DBA}\) (góc nội tiếp cùng chắn \(\stackrel\frown{AD}\) của (O)) hay \(\widehat{DCE}=\widehat{DBA}\left(17\right)\)

Từu (16), (17) \(\Rightarrow\widehat{DIE}=\widehat{DBA}\)

Mà 2 góc trên ở vị trí đồng vị

\(\Rightarrow EI\) // AB (18)

Từ (11), (18) \(\Rightarrow CH\perp EI\) (19)

Từ (12), (19) \(\Rightarrow EI\perp MA\)

16 tháng 2 2021

O A B x C E D M

a, xét tg AEO và CEO có : EO chung

^AEO = ^CEO = 90

OA = OC = r

=> Tg AEO = tg CEO (ch-cgv)

=> ^AOE = ^COE 

xét tg MAO và tg MCO  có : Mo chung

OA = OC = r

=> tg MAO = tg MCO (cg-c)

=> ^MAO = ^MCO 

mà ^MAO = 90

=> ^MCO = 90 => OC _|_ MC

có C thuộc 1/2(o)

=> MC là tt của 1/2(o)

b, xét tứ giác MCOA có : ^MCO = ^MAO = 90

=> ^MCO + ^MAO = 180

=>MCOA nội tiếp

+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM

có MEA = 90 do AC _|_ MO (Gt)

=> ^ADM = ^MEA = 90

=> MDEA nt

31 tháng 3 2020

1+1+12+12

a)

Theo tính chất 2 tiếp tuyến cắt nhau (MAMA, MCMC) thì MA=MCMA=MC

Mà OA=OC=ROA=OC=R

⇒MO⇒MO là đường trung trực của ACAC

⇒MO⊥AC⇒MEAˆ=900(1)⇒MO⊥AC⇒MEA^=900(1)

Lại có:

ADBˆ=900ADB^=900 (góc nt chắn nửa đường tròn)

⇒MDAˆ=1800−ADBˆ=900(2)⇒MDA^=1800−ADB^=900(2)

Từ (1);(2) ⇒MEAˆ=MDAˆ⇒MEA^=MDA^. Mà 2 góc này cùng nhìn cạnh MAMA nên tứ giác AMDEAMDE là tgnt.

2 tháng 5 2019

cảm ơn bn

nhưng mik còn câu c thôi

mà bn chép mạng cx chọn cái chép đi chứ, chép thừa r

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)