Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
DA,DB là tiếp tuyến
=>DA=DB và OD là phân giác của góc AOB(1) và DO là phân giác của góc ADB
b: OA=OB
DA=DB
=>OD là trung trực của AB
=>OD vuông góc AB tại I và I là trung điểm của AB
d: Xét (O) có
EA,EC là tiếp tuyến
=>EA=EC
mà OA=OC
nên OE là trung trực của AC và OE là phân giác của góc AOC(2)
=>OE vuông góc AC tại J và J là trung điểm của AC
Từ (1), (2) suy ra góc DOE=1/2*góc BOC=180*1/2=90 độ
Xét tứ giác AIOJ có
góc AIO=góc AJO=góc IOJ=90 độ
=>AIOJ là hình chữ nhật
e: Xét ΔABC có AI/AB=AJ/AC
nên IJ//BC
b)
Đáp án : AIOJ là hình chữ nhật
Giải
+) ta có DA,DB là tiếp tuyến của (O)
=> D cách đều A và B ,
ta dễ dàng cm đc OA = OB => O cách đều A,B
=> OD vuông góc AB => AIO = 90o90o
chứng minh tương tự = > AJO = 90o90o
B,A,C cùng thuộc nửa mf (O) , BC là đường kính => tam giác BAC vuông tại A
=> BAC = IAJ = 90o90o
xét tam giác AIOJ có 3 góc vuông = > AIOJ là hình chữ nhật
a/
\(\widehat{BAC}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow AB\perp AC\Rightarrow AI\perp AC\)
\(OE\perp AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường thẳng nối điểm đó với tâm đường tròn vuông góc với đường thẳng nối hai tiếp điểm) \(\Rightarrow OJ\perp AC\)
=> AI//OJ (cùng vuông góc với AC) (1)
\(\widehat{BAC}=90^o\) (cmt) \(\Rightarrow AC\perp AB\Rightarrow AJ\perp AB\)
\(OD\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường thẳng nối điểm đó với tâm đường tròn vuông góc với đường thẳng nối hai tiếp điểm) \(\Rightarrow OI\perp AB\)
=> AJ//OI (cùng vuông góc với AB) (2)
=> AIOJ là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
\(\widehat{BAC}=90^o\) (cmt)
=> AIOJ là hình chữ nhật (Hình bình hành có 1 góc trong bằng 90 độ là HCN)
b/
Ta có
IA=IB (Hai tiếp tuyến cùng xp từ 1 điểm thì đường thẳng nối điểm đó với tâm đường tròn vuông góc và chia đôi đường thẳng nối hai tiếp điểm)
JA=JC (Hai tiếp tuyến cùng xp từ 1 điểm thì đường thẳng nối điểm đó với tâm đường tròn vuông góc và chia đôi đường thẳng nối hai tiếp điểm)
=> IJ là đường trung bình của tg ABC => IJ//BC
c/
G là trọng tâm tg ABC \(\Rightarrow OG=\dfrac{1}{3}AO\) không đổi
=> Khi A di chuyển trên đường tròn thì G di chuyển trên đường tròn đường kính OG
\(\widehat{BAC}=90^o\)
a/ Xét tam giác ABC nội tiếp đường tròn (O) có AB là đường kính của đường tròn nên tam giác ABC là tam giác vuông(Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp tam giác đó.....)
b/ Vì D là giao điểm hai tiếp tuyến tại A và C của đường tròn (O) nên: DA=DC
D1=D2(t/c 2 tiếp tuyến cắt nhau)
Xét tam giác DHA=DHC(c.g.c).....nênH1=H2
Mà H1+H2=180....nên H1=H2=90...