Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ O kẻ OM vuông góc với CD tại M
Ta có : \(\begin{cases}AE\text{//}MO\text{//}BF\\AO=OB\end{cases}\) => OM là đường trung bình của hình thang ABFE => ME = MF (1)
Mặt khác, OM vuông góc với dây cung CD nên M là trung điểm dây CD => MC = MD (2)
Từ (1) và (2) suy ra CE = DF (đpcm)
Xét (O) có
\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AEB}=90^0\)
Xét tứ giác BEFI có
\(\widehat{BEF}+\widehat{FIB}=180^0\)
nên BEFI là tứ giác nội tiếp
hay B,E,F,I cùng thuộc 1 đường tròn
a) \(\Delta ABE\)nội tiếp đường tròn đường kính \(AB\)
\(\Rightarrow\)\(\Delta ABE\perp E\)
\(\Rightarrow\)\(AEB\lambda=90\)độ
Tứ giác\(BEFI\)nội tiếp đường tròn đường kính \(FB\)
Xét ΔIAC vuông tại I và ΔIDB vuông tại I có
góc IAC=góc IDB
=>ΔIAC đồng dạng với ΔIDB
=>IA/ID=IC/IB
=>IA*IB=ID*IC
Xét ΔACF và ΔAEC có
góc ACF=góc AEC
góc CAF chung
=>ΔACF đồng dạng với ΔAEC
=>AC/AE=AF/AC
=>AC^2=AE*AF
a, HS tự chứng minh
b, Từ giả thiết ta có AB là đường trung trực của CE => B C ⏜ = B E ⏜ = B F ⏜ = D E ⏜
c, Sử dụng mối liên hệ cung và dây
a, Gọi I là Trung điểm CD => IC = ID
Xét hình thang AEFB , I là trung điểm EF => IE=IF
Từ đó suy ra CE=DF
b, Ta có E A B ^ và F B A ^ bù nhau nên có một góc tù và một góc nhọn
Giả sử E A B ^ > 90 0 => ∆EAO có OE > AO = R => E ở ngoài đường tròn mà OE = OF nên F cũng ở ngoài đường tròn