K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

a) Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ΔABC⇒ΔABC vuông tại C

ˆABC+ˆBAC=900⇒ABC^+BAC^=900 (hai góc nhọn trong tam giác vuông) hay ˆABC+ˆHAC=900ABC^+HAC^=900

ΔAHCΔAHC vuông tại H ˆHAC+ˆACH=900⇒HAC^+ACH^=900 (hai góc nhọn trong tam giác vuông).

ˆABC=ˆACH⇒ABC^=ACH^ (cùng phụ vớiˆ HACHAC^)

Lại có ˆACM=ˆABCACM^=ABC^ (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AC)

ˆACM=

11 tháng 2 2022

undefined

a) Nhận xét \(ACB=90^o\)( góc nội tiếp chắn nửa đường tròn ) nên \(AH\) vuông góc \(BC\)

\(\Rightarrow ACH=ABC\)

Mặt khác , ta lại có :

\(ACM=ABC\)

Từ đó \(ACH=ACM\) hay CA là tia phân giác của góc MCH 

 

 

 

 

11 tháng 2 2022

Câu b làm kiểu j ạ

11 tháng 2 2022

b) 

Tam giác ABC nội tiếp đường tròn đường kính AB

=> Tam giác ABC vuông tại C

\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ với góc BAC)

Lại có: Góc M chung

=> ....

21 tháng 2 2021

M T A B O

xét (o) có ^MTA là góc tạo bởi tt à dc chắn cung TA

                ^TBM là góc nt chắn cung TA 

=> ^MTA = ^TBM (hq)

xét tg MTA và tg MBT có ^M chung

=> tg MTA đồng dạng tg MBT (g-g)

=> MT/MB = MA/MT

=> MT^2 = MB.MA

21 tháng 2 2021

bài 2 tự kẻ hình đi

a, như bài 1

b, tg MAC đồng dạng tg MCB (câu a)

=> MA/MC = MC/MB 

=> MC^2 = MA.MB (1)

xét tg MCO có ^MCO = 90 do MC là tt 

CH _|_ MO 

=> mc^2 = mh.mo (ĐL)   (2)

(1)(2) => MH.MO = MA.MB

c, xét tg AHC và tg ACB có : ^ACB = ^AHC = 90(do C thuộc đường tròn đk AB)

^cah CHUNG

=> tg AHC đồng dạng tg ACB

=> ^ACH = ^CBA mà ^CBA = ^MCA (Câu a)

=> ^ACH = ^MCA 

=> CA là pg...
 

a: Vì MC là tiếp tuyến của (O)

nen ΔOCM vuông tại C

b: Xét (O) có

góc MCA là góc tạo bởi tiếp tuyến MC và dây cung CA

góc ADC là góc nội tiếp chắn cung CA

Do đó: góc MCA=góc ADC

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0