K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

\(a,\widehat{ACB}=90^0\left(\text{góc nt chắn nửa đg tròn}\right)\)

\(\left\{{}\begin{matrix}\widehat{FCI}+\widehat{ICE}=90^0\\\widehat{ICE}+\widehat{ACO}=\widehat{ICO}=90^0\end{matrix}\right.\Rightarrow\widehat{FCI}=\widehat{ACO}\\ OA=OC\Rightarrow\widehat{ACO}=\widehat{CAO}\\ \left\{{}\begin{matrix}\widehat{CBA}+\widehat{IFC}=90^0\\\widehat{CBA}+\widehat{CAO}=90^0\end{matrix}\right.\Rightarrow\widehat{IFC}=\widehat{CAO}=\widehat{ACO}\\ \Rightarrow\widehat{FCI}=\widehat{IFC}\Rightarrow IF=IC\left(1\right)\\ \left\{{}\begin{matrix}\widehat{FCI}+\widehat{ICE}=90^0\\\widehat{IFC}+\widehat{IEC}=90^0\end{matrix}\right.\Rightarrow\widehat{ICE}=\widehat{IEC}\Rightarrow IE=IC\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IF=IE\left(đpcm\right)\)

\(b,IE=IF=IC\left(cm\text{ trên}\right)\\ \Rightarrow I\text{ là tâm đường tròn ngoại tiếp }\Delta ECF\\ \text{Mà }OC\perp CI\Rightarrow OC\text{ là tt đtnt }\Delta ECF\)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

10 tháng 5 2019

mình hỏi rồi nè

Bài 1 : Trên nửa đưởng tròn tâm O đường kính AB lấy điểm C. Kẻ tiếp tuyến Ax với (O) . Tia BC cắt Ax ở D và tia phân giác góc DAC cắt nửa đường tròn tại E và cắt BC tại F. Hai dây AC và BE cắt nhau tại Ha/ CM tứ giác CHEF nội tiếpb/ CM tam giác ABF cânc/ Gọi I là trung điểm của FH. CM IE = IC và OI vuông góc với CEBài 2 : Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A, B phân biệt....
Đọc tiếp

Bài 1 : Trên nửa đưởng tròn tâm O đường kính AB lấy điểm C. Kẻ tiếp tuyến Ax với (O) . Tia BC cắt Ax ở D và tia phân giác góc DAC cắt nửa đường tròn tại E và cắt BC tại F. Hai dây AC và BE cắt nhau tại H

a/ CM tứ giác CHEF nội tiếp

b/ CM tam giác ABF cân

c/ Gọi I là trung điểm của FH. CM IE = IC và OI vuông góc với CE

Bài 2 : Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A, B phân biệt. Đường thẳng OA cắt (O), (O') lần lượt tại hai điểm C, D. Đường thẳng O'A cắt (O), (O') lần lượt tại hai điểm E, F 
a/ CM 3 đường thẳng AB, CE và DF đồng quy tại I 
b/ tứ giác BEFI nội tiếp
c/ Cho PQ là tiếp tuyến chung của (O), (O') ( P thuộc (O) và Q thuộc (O')) CM đường thẳng AB đi qua trung điểm của đoạn thẳng PQ

ThíchHiển thị thêm cảm xúc

Bình luậnChia sẻ

0