Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Vì F C H = F D H = 90 o nên tứ giác CHDF nội tiếp đường tròn tâm I đường kính FH
=> IC = ID. Mà OC = OD nên ∆ OCI = ∆ ODI (c.c.c) => COI = DOI
=> OI là phân giác của góc COD
d) Vì OC = CD = OD = R nên ∆ OCD đều => COD = 60o
Có C A D = 1 2 C O D = 30 o = > C F D = 90 o − C A D = 60 o
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID = C I D 2 = 60 o
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID = C I D 2 = 60 o
Mặt khác COI = DOI = C O D 2 = 30 o = > O I D + D O I = 90 o = > Δ O I D vuông tại D
Suy ra O I = O D sin 60 o = 2 R 3
Vậy I luôn thuộc đường tròn O ; 2 R 3
Câu a dễ nha: tứ giác BCDO có DOB+DCB=90+90=180(mà 2 góc ở vị trí đối nhau )
nên BCDO nội tiếp
câu b) tam giác ADO và tam giác ABC có:
góc BAC chung
AOD=ACB=90
câu c: CB là dây cung mà OE là đường thẳng đi qua bán kính nên OE vuông góc với BC
nên OE// DC hay AD//OE mà DE//AO nên OEDA là hình bình hành
câu d thì mk chưa nghĩ ra hihi thông cảm nha
ở câu c nếu chỉ có BC là dây và OE là đường thẳng đi qua bán kính thì BC chưa thể vuông góc với OE được bạn nhé mà cần phải OE đi qua trung điểm của BC nữa
a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).
(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)
b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)
ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH
=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)
c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID
tam giác ADH: DI là trung tuyến
tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.
Nhớ L I K E nha
VE HINH
â) Xét tứ giác KCID ,co:
gocI = (cungAB+cungCD):2 = (180+60):2 = 120 độ
gocK=(cungAB-cungCD):2 =(180-60):2=60 độ
gócI+gocK=120do+60do=180 do
Vay : tứ giác KCID nội tiếp (tổng số đo 2 góc đối diện=180 độ )
:góc AKB = 60 độ
b)Ta có:AB//CD
=>cungAC=cungBD=(180-60):2=60 do (2 cung nằm giữa 2 dây song song thì = nhau )
=>AC=BD(2 dây chan 2 cung = nhau thi = nhau ) (1)
=>tứ giác ACDB là hình thang cân
***Xét : 3giac AKDva 3giac BKC ,co:
gocD=gocC=90do (vi gocC va gocD là góc nội tiếp chắn nửa đường tròn)
gocCAD=gocDBC(2goc noi tiep cung chan cungCD)
AD=BC(2 đường chéo của hình thang cân thì = nhau )(cmt)
Do do:3giacAKD =3giacBKC (g-c-g)
=>KD=KC (2 canh tương ứng) (2)
Ta lại có :KA=KC+AC(C nam giua A va K)
}(3)
:KB=KD+BD(D nam giua B va K)
Tu (1) ,(2) va (3) suy ra KA=KB (4)
Tu (2) va (4) suy ra KA.KC=KB.KD .
a) vì AD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC
\(\Rightarrow OD\perp BC\)
Mà \(DE\perp OD\)
\(\Rightarrow BC//DE\)
b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)
\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)
suy ra tứ giác ACIK nội tiếp
c) OD cắt BC tại H
Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)
Xét \(\Delta OHC\)vuông tại H có :
\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{HOC}=60^o\)
\(\Rightarrow\widehat{BOC}=120^o\)
\(\Rightarrow\widebat{BC}=120^o\)
P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha.
a) Tứ giác BEFI có: BFF = 90o (gt)
BEF = BEA = 90o
=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF
b) O I F A B C D E
Vì \(AB\perp CD\)nên AC = AD
=> ACF = AEC
Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC
=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)
=> AE . AF = AC2
c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)
Mặt khác, ta có: ACB = 90o (góc nội tiếp chứa đường tròn)
\(\Rightarrow AC\perp CB\)(2)
Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.
a) Vì C, D thuộc nửa đường tròn đường kính AB nên
A C B = A D B = 90 o ⇒ F C H = F D H = 90 o ⇒ F C H + F D H = 180 o
Suy ra tứ giác CHDF nội tiếp
b) Vì AH ⊥ BF, BH ⊥ AF nên H là trực tâm ∆ AFB ⇒ FH ⊥ AB
⇒ C F H = C B A ( = 90 o − C A B ) ⇒ Δ C F H ~ Δ C B A ( g . g ) ⇒ C F C B = C H C A ⇒ C F . C A = C H . C B