K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2020

a) Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DC là tiếp tuyến có C là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DC=DB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CM+CD=MD(C nằm giữa M và D)

mà MC=MA(cmt)

và DC=DB(cmt)

nên MD=MA+BD(đpcm)

Ta có: MA=MC(cmt)

nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

hay MO⊥AC

Xét (O) có 

ΔABC nội tiếp đường tròn(A,C,B∈(O))

AB là đường kính của (O) 

Do đó: ΔABC vuông tại C(Định lí)

⇒CA⊥CB

Ta có: CA⊥CB(cmt)

MO⊥CA(cmt)

Do đó: BC//MO(Định lí 1 từ vuông góc tới song song)

Ta có: DC=DB(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra OD là đường trung trực của BC

hay OD⊥BC

Ta có: BC//MO(cmt)

BC⊥OD(cmt)

Do đó: MO⊥OD(Định lí 2 từ vuông góc tới song song)

Xét ΔMOD có MO⊥OD(cmt)

nên ΔMOD vuông tại O(Định nghĩa tam giác vuông)

 

21 tháng 12 2021

a: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

DC là tiếp tuyến

DB là tiếp tuyến

Do đó: DC=DB

Ta có: CM+DC=DM

nên MD=MA+BD

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

17 tháng 4 2017

Giải:

a) Ta có OM, ON lần lượt là tia phân giác cả AOP và BOP

Mà AOP kể bù BOP nên suy ra OM vuông góc với ON.

Vậy ∆MON vuông tại O.

Lại có ∆APB vuông vì có góc vuông (góc nội tiếp chắn nửa cung tròn)

Tứ giác AOPM nội tiếp đường tròn vì có + = 2v. Nên = (cùng chắn cung OP).

Vậy hai tam giác vuông MON à APB đồng dạng vị có cắp góc nhọn bằng nhau.

b)

Tam giác AM = MP, BN = NP (1) (tính chất hai tiếp tuyến cắt nhau)

Tam giác vuông MON có OP là đường cao nên:

MN.PN = OP2 (2)

Từ 1 và 2 suy ra AM.BN = OP2 = R2

c) Từ tam giác MON đồng dạng với tam giác APB ta có :

Khi AM = thi do AM.BN = R2 suy ra BN = 2R

Do đó MN = MP + PN = AM + BN = + 2R =

Suy ra MN2 =

Vậy =

d) Nửa hình tròn APB quay quanh bán kính AB = 2R sinh ra một hình cầu có bán kính R.

Vậy V = πR3