K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6

\(n^2+1⋮2n+1\)

\(\Leftrightarrow\exists k\inℕ^∗:n^2+1=k\left(2n+1\right)\)

\(\Leftrightarrow n^2-2kn+1-k=0\)

Có \(\Delta'=\left(-k^2\right)-\left(1-k\right)=k^2+k-1\)

Vì \(n\inℕ^∗\)nên \(\Delta'\) phải là số chính phương 

\(\Leftrightarrow\exists l\inℕ^∗:k^2+k-1=l^2\)

\(\Leftrightarrow4k^2+4k-4=4l^2\)

\(\Leftrightarrow\left(4k^2+4k+1\right)-4l^2=5\)

\(\Leftrightarrow\left(2k+1\right)^2-\left(2l\right)^2=5\)

\(\Leftrightarrow\left(2k+2l+1\right)\left(2k-2l+1\right)=5\)

 Vì \(k,l\inℕ^∗\) và \(2k+2l+1>2k-2l+1>0\) nên ta chỉ có 1 TH duy nhất là \(\left\{{}\begin{matrix}2k+2l+1=5\\2k-2l+1=1\end{matrix}\right.\) \(\Leftrightarrow k=l=1\)

 Khi đó \(n^2+1=2n+1\) 

 \(\Leftrightarrow n^2=2n\)

 \(\Leftrightarrow\left[{}\begin{matrix}n=0\left(loại\right)\\n=2\left(nhận\right)\end{matrix}\right.\)

 Vậy \(n=2\) là số nguyên dương duy nhất thỏa mãn ycbt.