Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của 10 số chính phương đầu tiên là : \(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Tổng 10 số chính phương đầu tiên là :
\(1^2+2^2+3^2+...+10^2=\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Vậy tổng của 10 số chính phương đầu tiên là 385
#)Giải :
a)Theo đầu bài, ta có : \(n=a^2+b^2\)
\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)
\(\Rightarrowđpcm\)
b)Theo đầu bài, ta có : \(2n=a^2+b^2\)
\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)
\(\Rightarrowđpcm\)
Tổng của 10 số chính phương đầu tiên là :
\(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}\)=385
bài 2 bạn có thể tham khảo tại Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
chúc bn hok tốt !
Cho n(n+1)(2n + 1 ) / 6 là tổng của n số chính phương đầu tiên. Khi đó tổng 10 số chính phương đầu tiền là gì
=>Tổng của 10 số chính phương đầu tiên là :
\(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)