Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đánh dấu số h/s đó lần lượt là: a1,a2,....a9
Giả sử: a5 là học sinh lớp B
=>a4,a6 không thể cùng là học sinh lớp B
Th1:a4,a6 cùng thuộc lớp A khi đó a2,a6 cách đều a4.
a4,a8 cách đều a6 và a8 thuộc lớp B nên hiển nhiên a5 sẽ cách đều a2 và a8 (trái với giả thuyết)
Th2:a4 ,a6 cùng thuộc một lớp khác nhau.
Kmttq giả sử: a4 lớp A,a6 lớp B
Do a4 cách đều a3,a5 nên a4 thuộc lớp B. Do a6 cách đều a3 và a9 nên a9 thuộc lớp A.a5 cách đều a1 và a9 nên a1 thuộc lớp B....
tương tự như vậy hiển nhiên có:a7 đứng cách đều hai bạn cùng lớp A là a5,a9.(trái với giả thuyết)
Vậy có ít nhất một học sinh đứng cách hai bạn cùng lớp với mình một khoảng cách như nhau (đpcm)
Gọi x,y lần lượt là số học sinh nam và nữ của lớp 9A
Điều kiện: x,y>0; x,y nguyên
\(\frac{1}{2}\)số học sinh nam của lớp 9A là \(\frac{1}{2}x\)(học sinh)
\(\frac{5}{8}\)số học sinh nữ của lớp 9A là \(\frac{5}{8}y\)(học sinh)
Tổng số học sinh của lớp 9A là: \(\left(\frac{1}{2}x+\frac{5}{8}y\right)\)học sinh
để tham gia các cặp thi đấu thì số hộc sinh nam phải bằng số học sinh nữ nên ta có: \(\frac{1}{2}x=\frac{5}{8}y\)(1)
Số học sinh còn lại của lớp 9A là 16 học sinh nên:\(\left(x+y\right)-\left(\frac{1}{2}x+\frac{5}{8}y\right)=16\) (2)
Từ (1) và (2) ta có hệ phương trình\(\hept{\begin{cases}\frac{1}{2}x=\frac{5}{8}y\\\left(x+y\right)-\left(\frac{1}{2}x+\frac{5}{8}y\right)=16\end{cases}}\Rightarrow\hept{\begin{cases}x=20\\y=16\end{cases}}\)
Vậy lớp 9A có tất cả 36 học sinh
Từ 1 thành phố bất kì ta cần n - 1 đường bay nối đến n - 1 thành phố còn lại
Vậy từ n thành phố cần \(n\left(n-1\right)\)đường bay
Mà với cách tính này thì số đường bay bị gấp lên 2 lần
Vậy số đường cần là : \(\frac{n\left(n-1\right)}{2}\)
Vậy có thể cấp phép tối đa cho cho \(\frac{n\left(n-1\right)}{2}\)hãng hàng không .