Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có
\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9
\(942^{60}=\left(942^2\right)^{60}\)
Ta có
942 chia hết cho 3
Mà 3 là số nguyên tố
=> 9422 chia hết cho 32
=> 9422 chia hết cho 9
\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9
=> đpcm
Cm chia hết cho 2
Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2
=> Sai đề
a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
b/ giải thích tương tự câu a ta có
99^5 có c/số tận cùng là: 9
98^4 có c/số tận cung là: 6
97^3 có c/số tận cùng là: 3
96^2 có c/số tận cùng là: 6
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)
Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4
Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3
Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
cho n thuộc z chứng minh rằng 5^n-1 chia hết cho 4