Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}
Câu 1: ta có:
\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)
=> C=\(\frac{4^{n+1}-4}{3}\)
b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)
=> D=\(\frac{5^{2001}-1}{4}\)
Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)
=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .
Vậy \(A+1=2^{201}\)
Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)
=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)
Vậy 2B + 3 là một lũy thừa của 3...
Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)
=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)
Vậy C là lũy thừa của 2 có số mũ là 2006
Câu 5: a, Do 3n+2 chia hết cho n-1 hay:
3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;
=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)
b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6
nên => n thuộc (1,6,-1,-6);
c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1
=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;
n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);
d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1
=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.