Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Các vecto cùng phương với có điểm đầu và điểm cuối là các đỉnh của lục giác :
Số vecto khác vecto 0, có điểm đầu điểm cuối lấy từ 7 điểm A,B,C,D,E,F,O là:
\(A^2_7=7\cdot6=42\left(vecto\right)\)
\(T=\left|\overrightarrow{DF}\right|=\left|\overrightarrow{DE}+\overrightarrow{EF}\right|\Rightarrow T^2=DE^2+EF^2+\overrightarrow{DE}.\overrightarrow{EF}\)
\(=a^2+a^2+a.a.cos60^0=3a^2\)
\(\Rightarrow\left|\overrightarrow{DF}\right|=a\sqrt{3}\)
\(AC=FD\Rightarrow\left|\overrightarrow{AC}\right|=a\sqrt{3}\)
\(P=\left|\overrightarrow{AI}\right|=\left|\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AC}\right|\Rightarrow P^2=\dfrac{1}{4}\left(AD^2+AC^2+2\overrightarrow{AD}.\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\left(4a^2+3a^2+2.2a.a\sqrt{3}.cos30^0\right)=\dfrac{11}{2}a^2\)
\(\Rightarrow\left|\overrightarrow{AI}\right|=\dfrac{a\sqrt{22}}{2}\)
Vì O là tâm của ngũ giác abcde nên O cũng là trọng tâm của ngũ giác nên vecto oa+ob+oc+od+oe=0
a) Các vectơ khác vectơ O→ và cùng phương với vectơ OA→ là:
b) Các vectơ bằng vectơ AB→ là:
Do ABCDEF là lục giác đều tâm O nên AB = BC = CD= DE = EF = FA = OC.
Trên hình có tất cả 12 đoạn thẳng bằng nhau và bằng OC, tạo thành 24 vectơ có độ dài bằng OC. Trừ ra vectơ O C → còn lại 23 vectơ.
Chọn D.
Ngũ giác đều chứ nhỉ ._?
Các vector bằng nhau: `\vec(AB) =\vec(ED) ; \vec(BA)=\vec(DE) ; \vec(BC)=\vec(FE) ; \vec(CB)=\vec(EF) ; \vec(AF)=\vec(CD) ; \vec(FA)=\vec(DC) ; \vec(AO)=\vec(OD) ; \vec(OA) =\vec(DO) ; \vec(BO)=\vec(OE) ; \vec(OB)=\vec(EO) ; \vec(FO)=\vec(OC) ; \vec(OF)=\vec(CO)`
Lục giác chứ ;-;