\(\perp\)CD, EN // AD, BM // AC ( M,N thuộc đường thẳng CD). Bi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2021

a, Xét △ ABC vuông tại A có: 

BC2 = AC2 + AB2 (định lý Pytago)

=> BC2 = 62 + 82 = 100

=> BC = 10 cm

Vì AD là phân giác \(\widehat{BAC}\) (gt)

\(\Rightarrow\frac{CD}{AC}=\frac{BD}{AB}=\frac{CD+BD}{AC+AB}=\frac{BC}{6+8}=\frac{10}{14}=\frac{5}{7}\)(áp dụng t/c dãy tỉ số bằng nhau)

Do đó: \(\frac{CD}{AC}=\frac{5}{7}\) \(\Rightarrow\frac{CD}{6}=\frac{5}{7}\) \(\Rightarrow CD=\frac{6.5}{7}=\frac{30}{7}\)(cm)

\(\frac{BD}{AB}=\frac{5}{7}\)\(\Rightarrow\frac{BD}{8}=\frac{5}{7}\)\(\Rightarrow BD=\frac{8.5}{7}=\frac{40}{7}\)(cm)

b, Xét △AHB vuông tại H và △AEH vuông tại E

Có: \(\widehat{HAB}\)là góc chung

=> △AHB ᔕ △AEH (g.g)

\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)

=> AH . AH = AE . AB

=> AH2 = AE . AB

c, Xét △AHC vuông tại H và △AFH vuông tại F

Có: \(\widehat{HAC}\)là góc chung

=> △AHC ᔕ △AFH (g.g)

\(\Rightarrow\frac{AH}{AF}=\frac{AC}{AH}\)

=> AH2 = AF . AC

mà AH2 = AE . AB (cmt)

=> AE . AB = AF . AC

2 tháng 12 2019

a. Ta có: 

\(\Delta MNP\)vuông tại \(N\left(gt\right)\)

\(\Rightarrow\widehat{N}=90^0\)

\(HC\perp MN\left(gt\right)\)

\(\Rightarrow\widehat{C}=90^0\)

\(HD\perp NP\left(gt\right)\)

\(\Rightarrow\widehat{D}=90^0\)

Xét tứ giác HDNC, ta có:

\(\widehat{N}=\widehat{C}=\widehat{D}\left(=90^0\right)\left(cmt\right)\)

\(\Rightarrow HDNC\)là hình chữ nhật (dhnb)

3 tháng 3 2020

b, xét ΔMHN và ΔMNP có : ^P chung

^PNM = ^NHM = 90

=> ΔMHN ~ ΔMNP (g-g)

=> NH/MN = NP/MP 

=> NH.MP = MN.NP