Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy AB=BC=CD=DE
và \(ABC\ge CDE=>AC\ge CE\)
Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)
\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)
Cộng theo vế (1) và (2)
\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)
Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều
Đặt \(A=\frac{\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)
\(\Rightarrow16A=\frac{\left(a+b+c+d+e\right)^2\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)
Áp dụng AM-GM ta có:
\(\Rightarrow16A\ge\frac{4e\left(a+b+c+d\right)^2\left(a+b+c\right)\left(a+b\right)}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d\left(a+b+c\right)^2\left(a+b\right)}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d.4c\left(a+b\right)^2}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d.4c.4ab}{abcde}\)
\(\Rightarrow A\ge16\)
Dấu "=" xảy ra khi đồng thời:
\(\text{a+b+c+d+e=4, a+b+c+d=e, a+b+c=d, a+b=c, a=b}\)
\(\Rightarrow e=2,d=1,c=\frac{1}{2},a=\frac{1}{4},b=\frac{1}{4}\)
Áp dụng bất đẳng thức Bunhiacopxki , được :
\(\left(a+b\right)^2=\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
\(\Rightarrow\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\left(1\right)\)
Mặt khác : Vì a,b là 2 cạnh góc vuông của tam giác vuông và c là cạnh huyền nên ta có : \(c^2=a^2+b^2\Rightarrow c=\sqrt{a^2+b^2}\left(2\right)\)
Từ (1) và (2) ta suy ra : \(c\ge\frac{a+b}{\sqrt{2}}\)(đpcm)