Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mik tính theo công thức :n.(n-1) :2
Số đường thẳng nếu trong năm điểm đã cho không có ba điểm nào thẳng hàng là : \(\frac{5.4}{2}\)= 10 (đường thẳng)
b) Số đường thẳng nếu ba điểm A, B, C thẳng hàng là 8
Cách 1. Vẽ hình và thấy có tất cả là 8
đường thẳng.
Cách 2. Theo ý a), nếu không có ba điểm
nào thẳng hàng thì có 10 đường thẳng.
Với ba điểm A, B, C nếu chúng không thẳng hàng thì có ba đường thẳng, nhưng vì chúng thẳng hàng nên chỉ có một đường thẳng.
Do đó, số đường thẳng phải đếm giảm đi 3 -1 = 2.
Vậy có tất cả 10 - 2 = 8 đường thẳng.
a: Có \(C^2_5\left(đoạn\right)\)
b: Có 5 đường thẳng đi qua hai điểm bất kì
- Có năm đường thảng phân biệt trong hình vẽ, đó là: EA , EB , EC , ED , AB .
- Hai đường thẳng AB và CD trùng nhau; đường thẳng a song song với đường thẳng AB nên cũng song song với đường thẳng CD. Do đó, đường thẳng a không cắt đường thẳng CD.
Cứ hai điểm tạo thành một đoạn thẳng
Có 5 cách chọn điểm thứ nhất, 4 cách chọn điểm thứ hai, số đoạn thẳng được tạo là:
5 x 4 = 20 (đoạn thẳng)
Theo cách tính trên mỗi đoạn thẳng được tính hai lần. Vậy số đoạn thẳng được tạo là: 20 : 2 =10 (đoạn thẳng)
Kết luận:..