K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Vì 2n + 1 là số chính phương . Mà 2n + 1 là số lẻ

=> 2n + 1 = 1(mod8)

=> n chia hết cho 4

=> n + 1 là số lẻ

=> n + 1 = 1(mod8)

=> n chia hết cho 8

Mặt khác :

3n + 2 = 2(mod3)

=> (n + 1) + (2n + 1) = 2(mod3)

Mà n + 1 và 2n + 1 là các số chính phương lẻ

=> (n + 1) = (2n + 1) = 1(mod3)

=. n chia hết cho 3

Mà (3;8) = 1

Vậy n chia hết cho 24

17 tháng 1 2016

1.

Chưa phân loại

2.

Chưa phân loại

3.

ko bt

4.

Chưa phân loại

5.

ko bt

18 tháng 1 2016

Thiên Thảo copy nek cho copy vs

1. Chưa phân loại

2. Chưa phân loại

4. Chưa phân loại

13 tháng 3 2016

bài 2 :338350

8 tháng 9 2017

n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.

20 tháng 2 2016

Do 2n+1 là số chính phương lẻ nên 2n+1 chia cho 8 dư 1.

=> n chia hết cho 4. => 3n+1 cũng là một số chính phương lẻ(Do 3n+1 là số chính phương).

=> 3n+1 chia cho 8 dư 1. => 3n chia hết cho 8.

=> n chia hết cho 8( Do (3,8)=1). (1) 

-Ta có: 2n+1 và 3n+1 là hai đô chính phương. +Nếu n chia cho 5 dư 4=> 3n+1 chia cho 5 dư 3. => Loại do

số chính phương chia cho 5 chỉ dư 0;1;4. +Nếu n chia cho 5 dư 3=> 2n+1 chia cho 5 dư 2. => Loại.

+Nếu n chia cho 5 dư 2=> 3n+1 chia cho 5 dư 2. => Loại.

+Nếu n chia cho 5 dư 1=> 2n+1 chia cho 5 dư 3. => Loại.

-Từ 4 điều trên và n có tồn tại => n chia hết cho 5. (2)

-Từ (1);(2) => n chia hết cho 8.5= 40.( Do (8,5)=1).

=>n=40 hoặc n=80

Với n=40 =>2n+1 là số chính phương

Với n=80 =>2n+1 không phải là số chính phương

Vậy n=40

14 tháng 3 2016

Gọi ƯCLN(n+1;2n+3)=d

=>n+1 chia hết cho d=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>2n+3 chia hết cho d

=>2n+3-(2n+2) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(n+1;2n+3)=1

Vậy (n+1)/(2n+3) (nEN)là p/s tối giản

24 tháng 5 2017

Gọi \(d=ƯCLN\left(n+1;2n+3\right)\)

Do đó \(d\inƯC\left(n+1;2n+3\right)\)

\(\Rightarrow n+1⋮d;2n+3⋮d\)

\(\Rightarrow2n+2⋮d;2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\) n+1 và 2n+3 là hai số nguyên tố cùng nhau.

Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản với \(\forall n\in N\).

22 tháng 3 2016

p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

TH1: p=3k+1

\(\Rightarrow p^2=\left(3k+1\right)^2=\left(3k+1\right)3k+\left(3k+1\right)\)

\(=\left(3k+1\right)3k+3k+1=\left(3k+1+1\right)3k+1\) chia 3 dư 1

TH2: p=3k+2

\(\Rightarrow p^2=\left(3k+2\right)^2=\left(3k+2\right)3k+\left(3k+2\right).2\)

\(=\left(3k+2\right)3k+2.3k+2.2\)

\(=\left(3k+2\right)3k+2.3k+3+1\)

\(=3.\left[k\left(3k+2\right)+2k+1\right]+1\) chia 3 dư 1

Do đó bình phương của 1 số nguyên tố luôn chia 3 dư 1, nên trừ đi 1 sẽ chia hết cho 3

\(\Rightarrow p^2-1\text{⋮}3\)

Vậy nếu p là số nguyên tố lớn hơn 3 thì \(p^2-1\text{⋮}3\)