K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

a) \(n-4⋮n-1\)

ta có \(n-1⋮n-1\)

mà \(n-4⋮n-1\)

\(\Rightarrow n-4-\left(n-1\right)⋮n-1\)

\(\Rightarrow n-4-n+1\)  \(⋮n-1\)

\(\Rightarrow-3\)                       \(⋮n-1\)

\(\Rightarrow n-1\in\text{Ư}_{\left(-3\right)}=\text{ }\left\{1;-1;3;-3\right\}\)

lập bảng giá trị

\(n-1\)\(1\)\(-1\)\(3\)\(-3\)
    \(n\)\(2\) \(0\)\(4\)\(-2\)

vậy \(n\in\text{ }\left\{2;0;4;-2\right\}\)

11 tháng 2 2018

a) n - 4 \(⋮\)n - 1

Ta có : n - 4 = (n - 1) - 3

Do n - 1 \(⋮\)n - 1

Để (n - 1) - 3 \(⋮\)n - 1 thì 3 \(⋮\)n - 1 => n - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}

Với : n - 1 = 1 => n = 2

        n - 1 = -1 => n = 0

        n - 1 = 3 => n = 4

        n - 1 = -3 => n = -5

Vậy n = {2; 0 ; 4 ; -5} thì n - 4 \(⋮\)n - 1

a,n-3 chia hết n+3

có n-3 chia hết n+3

<=> n+3-6chia hết n+3

vì n+3 chia hết n+3 nên 6 chia hết n+3

=>n+3 thuộc ước 6 ={1;2;3;6}

=> n = 4;5;6;9

22 tháng 1 2019

a) ta có: n2 + 2n + 7 chia hết cho n + 2

=> n.(n+2) + 7 chia hết cho n + 2

mà n.(n+2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

bn tự làm tiếp nha

b) n2 + 1 chia hết cho n - 1 

=> n2 - n +  n - 1 + 2 chia hết cho n - 1 

n.(n-1) + (n-1) + 2 chia hết cho n - 1 

(n-1).(n+1) + 2 chia hết cho n - 1 

mà (n-1).(n+1) chia hết cho n - 1 

=> 2 chia hết cho n - 1 

...

mấy câu còn lại dễ bn tự làm

4 tháng 10 2016

a) n + 11 chia hết cho n +2

n + 11 chia hết cho n + 2

Ta luôn có n+ 2 chia hết cho n+ 2

=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)

=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)

=> 9 chia hết cho (n+ 2)

=> Ta có bảng sau:

n+ 2-1-3-9139
n-3-5-11-118

 

Vì n thuộc N => n \(\in\) { 1; 8}

b) 2n - 4 chia hết cho n- 1

Ta có: (n -1 ) luôn chia hết cho (n- 1)

=> 2( n-1)\(⋮\) (n-1)

=>(2n- 2) chia hêt cho (n- 1)

=> (2n-4 )- (2n-2) chia hết cho (n-1 )

=> -2 chia hết cho ( n-1)

=> Ta có bảng sau:

n-1-11-22
n02-13

 

Vì n thuộc N nên n thuộc {0; 2; 3}

 

 

7 tháng 4 2020

a. -15

    -7

    -3

    -1

    0 

    2

    3

    5

    9 

    17

b. 4

c. 0

    1

5 tháng 10 2015

                                                    Giải

Bài 1:

a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)

                =12+32x (3+32)+.......+358 x (3+32)=12+3x 12+..........+358 x 12

                =12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)

Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.

=> Tổng này chia hết cho 4.

Bài 2:

Ta có: 12a chia hết cho 12; 36b chia hết cho 12.

=> tổng này chia hết cho 12.

Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)

Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.

=> Tổng này chia hết cho 5.

 

Xét các TH:

-TH1:\(n=2k\left(k\inℕ\right)\) 

\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)

-TH2:\(n=2k+1\left(k\inℕ\right)\)

\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)

Xét \(\(2\)\) trường hợp
Trường hợp 1:

+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))

Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:

+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))

Theo bài ra ta có:

\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)

\(\(=2.\left(n^2+7n+3\right)⋮2\)\)

\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)

_Minh ngụy_