Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n-4⋮n-1\)
ta có \(n-1⋮n-1\)
mà \(n-4⋮n-1\)
\(\Rightarrow n-4-\left(n-1\right)⋮n-1\)
\(\Rightarrow n-4-n+1\) \(⋮n-1\)
\(\Rightarrow-3\) \(⋮n-1\)
\(\Rightarrow n-1\in\text{Ư}_{\left(-3\right)}=\text{ }\left\{1;-1;3;-3\right\}\)
lập bảng giá trị
\(n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(2\) | \(0\) | \(4\) | \(-2\) |
vậy \(n\in\text{ }\left\{2;0;4;-2\right\}\)
a) n - 4 \(⋮\)n - 1
Ta có : n - 4 = (n - 1) - 3
Do n - 1 \(⋮\)n - 1
Để (n - 1) - 3 \(⋮\)n - 1 thì 3 \(⋮\)n - 1 => n - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
Với : n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 3 => n = 4
n - 1 = -3 => n = -5
Vậy n = {2; 0 ; 4 ; -5} thì n - 4 \(⋮\)n - 1
a,n-3 chia hết n+3
có n-3 chia hết n+3
<=> n+3-6chia hết n+3
vì n+3 chia hết n+3 nên 6 chia hết n+3
=>n+3 thuộc ước 6 ={1;2;3;6}
=> n = 4;5;6;9
a) ta có: n2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
bn tự làm tiếp nha
b) n2 + 1 chia hết cho n - 1
=> n2 - n + n - 1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n - 1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
mấy câu còn lại dễ bn tự làm
a) n + 11 chia hết cho n +2
n + 11 chia hết cho n + 2
Ta luôn có n+ 2 chia hết cho n+ 2
=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)
=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)
=> 9 chia hết cho (n+ 2)
=> Ta có bảng sau:
n+ 2 | -1 | -3 | -9 | 1 | 3 | 9 |
n | -3 | -5 | -11 | -1 | 1 | 8 |
Vì n thuộc N => n \(\in\) { 1; 8}
b) 2n - 4 chia hết cho n- 1
Ta có: (n -1 ) luôn chia hết cho (n- 1)
=> 2( n-1)\(⋮\) (n-1)
=>(2n- 2) chia hêt cho (n- 1)
=> (2n-4 )- (2n-2) chia hết cho (n-1 )
=> -2 chia hết cho ( n-1)
=> Ta có bảng sau:
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Vì n thuộc N nên n thuộc {0; 2; 3}
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
Xét các TH:
-TH1:\(n=2k\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)
-TH2:\(n=2k+1\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)
Xét \(\(2\)\) trường hợp
Trường hợp 1:
+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))
Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:
+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))
Theo bài ra ta có:
\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)
\(\(=2.\left(n^2+7n+3\right)⋮2\)\)
\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)
_Minh ngụy_