Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 + 3 +... + 100 = (100 + 1) x 100 : 2 = 4950
x + 4950 = 5056
x = 5056 - 4950 = 106
a,
n5 -n=n(n4 -1)=n(n2 +1)(n+1)(n-1)
vi n,n+1,n-1 la 3 so tu nhien lien tiep nen h cau chung chia het cho 3 va 2
mat khac (2;3)=1 nen S= n(n+1)(n-1)(n2 +1)chia het cho 6
xet n=5k
ma(5;6)=1nen Schia het cho 30
tuong tu voi n=5k+1 thi n-1 chia het cho 5
voi n=5k+2 thi n2 +1 chia het cho 5
voi n=5k+3 thi n2 +1 chia het cho 5
voi n=5k+4 thi n+1 chia het cho 5
vay voi moi n nguyen thi n5 -n chia het cho 30
a) 2n + 1 \(⋮\)n - 5
=> 2.( n - 5 ) + 1 + 10 \(⋮\)n - 5
=> 2.( n - 5 ) + 11 \(⋮\)n - 5
=> 11 \(⋮\)n - 5 [ vì 2.( n - 5 ) \(⋮\)n - 5 ]
=> n - 5 \(\in\)Ư(11) = { -11 ;- 1;1 ; 11 }
=> n \(\in\){ -6; 4;6;16 }
Vậy: n \(\in\){ -6; 4;6;16 }
b) n2 + 3n - 13 \(⋮\)n + 3
=> n.n + 3n - 13 \(⋮\)n + 3
=> n.( n+ 3 ) + 3 . ( n + 3 ) - 13 - 3n - 9 \(⋮\)n + 3
=> 13 - 3n - 9 \(⋮\)n + 3 [ vì n.( n + 3 ) và 3.( n + 3 ) \(⋮\)n + 3 ]
=> 3n - 22 \(⋮\)n + 3
=>3.( n - 3 ) - 22 - 9 \(⋮\)n + 3
=> 3.( n - 3 ) - 31 \(⋮\)n + 3
=> 31 \(⋮\)n + 3 [ vì 3. ( n - 3 ) \(⋮\)n + 3 ]
=> n + 3 \(\in\)Ư ( 31 ) = { -31 ; -1 ; 1 ; 31 }
=> n \(\in\){ -34 ; -4; -2 ; 28 }
Vậy: n \(\in\){ -34 ; -4; -2 ; 28 }
c) n2 + 3 \(⋮\) n - 1
=> n.n + 3 \(⋮\) n - 1
=> n.( n - 1 ) + 3 - n \(⋮\) n - 1
=> 3 - n \(⋮\) n - 1 [ vì n.( n - 1 ) \(⋮\) n - 1 ]
=> n - 3 \(⋮\) n - 1
=> ( n - 1 ) - 2 \(⋮\) n - 1
=> n - 1 \(\in\)Ư( 2 )= { -2 ; - 1; 1 ; 2 }
=> n \(\in\){ -1 ; 0 ;2 ;3 }
vậy: n \(\in\){ -1 ; 0 ;2 ;3 }
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
Gọi số học sinh cần tìm là a(học sinh ) (200< a < 750; a thuộc N)
Ta có a + 4 là bội chung của 12,15,20 và 200<a<750
12=2^2*3
15=3*5
20=2^2*5
BCNN(12,15,20)=2^2*3*5=60
=>BC(12,15,20)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,..........}nhớ chấm phẩy
A={4,64,124,184,244,304,364,424,484,544,604,664,724,784,...................}
vậy số học sinh của trường đo là {244;304;364;424,484,544;604;664;724}
\(\frac{5}{18.21}+\frac{5}{21.24}+\frac{5}{24.27}+...+\frac{5}{123.126}\)
\(=\frac{5}{3}\left(\frac{3}{18.21}+\frac{3}{21.24}+\frac{3}{24.27}+...+\frac{3}{123.126}\right)\)
\(=\frac{5}{3}\left(\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+\frac{1}{24}-\frac{1}{27}+...+\frac{1}{123}-\frac{1}{126}\right)\)
\(=\frac{5}{3}\left(\frac{1}{18}-\frac{1}{126}\right)\)
\(=\frac{5}{3}.\frac{1}{21}\)
\(=\frac{5}{63}\)
Study well ! >_<
Gọi d là \(ƯC\left(2n+3;3n+4\right)\)
Ta có: \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Leftrightarrow6n+9⋮d\)
\(3n+4⋮d\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
Vậy \(ƯCLN\left(2n+3;3n+4\right)=1\left(đpcm\right)\)
Bn ghi ro de ra