K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

23 tháng 11 2016

vì n và n+1 là 2 số tự nhiên liên tiếp

=) n + n+1 chia hết cho 2        (1)

vì n, n+1 và n+2 là 3 stn liên tiếp 

=) n+n+1+n+2 chia hết cho 3     (2)

Từ (1) và (2) =) n+n+1+n+2 chia hết cho 6

hay BCNN của n+n+1+n+2 là 6

vậy ....

6 tháng 4 2016

Đặt 2^n-1 => n=3

      2^n+1 => n=3

Vậy 2^n-1=2^3-1=8-1=7

       2^n+1=2^3+1=8+1=9

6 tháng 6 2015

Gọi a = n! - 1. Do n > 2 nên a >1.

Mọi số tự nhiên lớn hơn 1 đều có ít nhất một ước nguyên tố.

Gọi p là ước nguyên tố của a. Ta sẽ chứng minh rằng p > n.

Thậy vậy, giả sử p \(\le\) n thì tích 1.2.3...n chia hết cho p, ta có n! chia hết cho p, mà a chia hết cho p nên 1 nên 1 chia hết cho p, vô lý.

                   Vậy n! - 1 có ít nhất 1 ước nguyên tố lớn hơn n.

 

21 tháng 10 2015

Ta thấy :

2n-1 ; 2n ;2n+1  là 3 số tự nhiên liên tiếp

=>phải có một số chia hết cho 3

Mà 2n không chia hết cho 3 vìa 2 ko chia hết cho 3

=>hoặc 2n-1 hoặc 2n+1 chia hết cho 3

=>hoặc 2n-1 hoặc 2n+1 là hợp số