K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

ai mình rồi mình lại cho

1 tháng 2 2016

bó tay voi bài toán này

19 tháng 7 2015

a)(5n+7)(4n+6)

nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)

Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2   (1)

nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2    (2)

Từ (1)  (2) =>(5n+7).(4n+6) luôn chia hết cho 2

=>đpcm

22 tháng 7 2015

Xét trường hợp n chẵn (n = 2k) và n lẻ (n = 2k + 1)

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)

14 tháng 10 2018

a,  3n + 6 chia hết cho n 
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n 
=>n ЄƯ {1;2;3;6}  vậy n = 1 ; 6 ;2;3

b, (5n-5)chia hết cho n

vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5  phải chia hết cho n 
=>n Є {1;5}  vậy n = 1 ; 5 

15 tháng 10 2018

Để mk làm tiếp mấy bài còn lại nhé!

c) ta có: 3n + 9 chia hết cho n + 2

=> 3n + 6 + 3  chia hết cho n + 2

3.(n+2) + 3  chia hết cho n + 2

mà 3.(n+2)  chia hết cho n + 2

=> 3  chia hết cho n + 2

...

bn tự  làm tiếp nhé!

d) ta có: 4n + 8  chia hết cho n  - 2

=> 4n - 8 + 16  chia hết cho n  - 2

4.(n-2) + 16  chia hết cho n - 2

mà 4.(n-2)  chia hết cho n - 2

=> 16  chia hết cho n - 2

...

e) ta có: 3n + 8  chia hết cho 2n + 1

=> 2.(3n+8)  chia hết cho 2n + 1

6n + 16  chia hết cho 2n + 1

6n + 3 + 13  chia hết cho 2n + 1

3.(2n+1) + 13  chia hết cho 2n + 1

mà 3.(2n+1)  chia hết cho 2n + 1

=> 13  chia hết cho 2n + 1

...

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

15 tháng 10 2017

\(n+3=\left(n+1\right)+2\)

mà \(n+1⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)\)

\(\Rightarrow n+1\in\hept{ }1;2\)

TH1: \(n+1=1\Leftrightarrow n=1-1=0\)

Th2: \(n+1=2\Leftrightarrow n=2-1=1\)

Vậy \(n\in\hept{ }0;1\)

\(3n+5=3\left(n-1\right)+7\)

mà \(3\left(n-1\right)⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)\)

\(\Rightarrow n-1\in\hept{ }1;7\)

TH1: \(n-1=1\Leftrightarrow n=1+1=2\)

TH2: \(n-1=7\Leftrightarrow n=7+1=8\)

Vậy \(n\in\hept{ }2;8\)

\(4n-6=4n-4-2\)

\(\Leftrightarrow4n+4-8-2\)

\(\Leftrightarrow4\left(n+1\right)-8-2\)

\(\Leftrightarrow4\left(n+1\right)-10\)

mà \(2n+2=2\left(n+1\right)\)

mà \(4\left(n+1\right)⋮2\left(n+1\right)\)

\(\Leftrightarrow10⋮2\left(n+1\right)\)

\(\Leftrightarrow2\left(n+1\right)\inƯ\left(10\right)\)

\(\Leftrightarrow2\left(n+1\right)\in\hept{ }1;2;5;10\)

TH1: \(2\left(n+1\right)=1\Leftrightarrow n=-0.5\notin N\)

TH2: \(2\left(n+1\right)=2\Leftrightarrow n=0\in N\)

TH3: \(2\left(n+1\right)=5\Leftrightarrow n=1.5\notin N\)

TH4: \(2\left(n+1\right)=10\Leftrightarrow n=4\in N\)

Vậy \(n\in\hept{ }0;4\)

Nhớ k cho mình nhé! Thank you!!!

21 tháng 11 2017

n+3=(n+1)+2

mà n+1⋮n+1

⇒2⋮n+1

⇒n+1∈Ư(2)

⇒n+1∈{1;2

TH1: n+1=1⇔n=1−1=0

Th2: n+1=2⇔n=2−1=1

Vậy n∈{0;1

3n+5=3(n−1)+7

mà 3(n−1)⋮n−1

⇒7⋮n−1

⇒n−1∈Ư(7)

⇒n−1∈{1;7

TH1: n−1=1⇔n=1+1=2

TH2: n−1=7⇔n=7+1=8

Vậy n∈{2;8

4n−6=4n−4−2

⇔4n+4−8−2

⇔4(n+1)−8−2

⇔4(n+1)−10

mà 2n+2=2(n+1)

mà 4(n+1)⋮2(n+1)

⇔10⋮2(n+1)

⇔2(n+1)∈Ư(10)

⇔2(n+1)∈{1;2;5;10

TH1: 2(n+1)=1⇔n=−0.5∉N

TH2: 2(n+1)=2⇔n=0∈N

TH3: 2(n+1)=5⇔n=1.5∉N

TH4: 2(n+1)=10⇔n=4∈N

Vậy n∈{0;4