Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D
Gọi \(\left\{D\right\}=AO\cap BC\)
\(\Delta BOC:OB+OC>BC\) (1)
\(\Delta AOC:OA+OC>AC\) (2)
\(\Delta AOB:OA+OB>AB\) (3)
Từ (1), (2), (3)\(\Rightarrow2\left(OA+OB+OC\right)>AB+AC+BC\)
\(\Rightarrow OA+OB+OC>\dfrac{2P}{2}=P\) (4)
\(\Delta ACD:AC+DC>AD=AO+OD\) (5)
\(\Delta BOD:BD+OD>BO\) (6)
Từ (5), (6)\(\Rightarrow AC+BD+DC+OD>AO+BO+OD\)
\(\Rightarrow AC+BC>AO+BO\) (7)
Chứng minh tương tự ta được:
AB+BC>AO+CO (8)
AB+AC>BO+CO (9)
Từ (7),(8) ,(9)\(\Rightarrow2\left(AB+AC+BC\right)>2\left(OA+OB+OC\right)\)
\(\Rightarrow AB+AC+BC=2P>OA+OB+OC\) (10)
Từ (4), (10)\(\Rightarrow P< OA+OB+OC< 2P\)
Chúc bạn học tốt
Ta có : \(2^{n-1}⋮259\)
=> \(2^{n-1}\) thuộc B (259) = {0;259;...}
Mà n nhỏ nhất => n = 0
Ta có 2n - 1 chia hết cho 259
2n - 1 là B(259) = {0; 259; .....}
Mà n nhỏ nhất => 2n - 1 = 0
2n = 1 => n = 0
Vậy n nhỏ nhất là 0
t=>Có đường cao AH(gt) => Góc AHB = 90 độ
Xét tam giác AHB vuông tại H có
Góc BAH + góc ABh = 90 độ( do góc ABH = 90 độ
=> góc BAI + góc ABI = 45 độ
Có I nằm giữa B và F => Góc AIF là góc ngoài của tam giác BIA
=> góc AIF= góc ABI+ góc IAB= 45 độ (1)
Có góc BAH = 2 (góc C)
=> góc IAH= góc C
Ta lại có : góc FBC + góc IAH =45 độ
=> góc FBC + góc C =45 độ
=> góc AFI= 45 độ ( là góc ngoài của tam giác FBC) (2)
Từ (1) và (2) => tam giác AIF cân tại A(*)
Xét tam giác AIF có
góc AIF+ góc AFI + góc FAI=180 độ
=> góc IAF =90 độ(**)
Từ *) và (**) => tam giác AIF
vuông cân tại A
a) 9.10n+9.2=9.(10n+2)
ta co : 9.(10n+2) chia het cho 9 vi 9 chia het cho 9 nen tich chia het cho 9
10n=10......0 ( n so 0) ==> 10n +2=10.....2 ( tong cac chu so la 3 nen chia het cho 3)
==> cả 2 điều trên cho ta : 9. (10n+2) chia het cho 27
b) 92n +14 = (92)n +14 = 81n +14
81n=.......1 -> 81n +14 = .....1 +14 =........5 ( chia het cho 5 vi chu so tan cung la 5)
\(m-1⋮2m+1\)
\(\Rightarrow2\left(m-1\right)⋮2m+1\)
\(\Rightarrow2m-2=2m+1-3⋮2m+1\)
\(\Rightarrow3⋮2m+1\)
\(\Rightarrow2m+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow m=\left\{\begin{matrix}2m+1=-3\Rightarrow2m=-4\Rightarrow m=-2\\2m+1=3\Rightarrow2m=2\Rightarrow m=1\\2m+1=1\Rightarrow2m=0\Rightarrow m=0\\2m+1=-1\Rightarrow2m=-2\Rightarrow m=-1\end{matrix}\right.\)
\(\Rightarrow m=\left\{-2;1;0;-1\right\}\)
Vậy có 4 số nguyên m thỏa mãn đề bài
x y O F E A B a) Xét \(\Delta\)AOB và \(\Delta\)FOE có:
AO = FO (gt)
\(\widehat{AOB}\) = \(\widehat{FOE}\) (đối đỉnh)
OB = OE (gt)
=> \(\Delta\)AOB = \(\Delta\)FOE (c.g.c)
=> AB = EF (2 cạnh t/ư)
b) AB ko thể \(\perp\) với EF đc, nhìn hình là biết.
Đặt \(A=9.10^n+18\)
\(27=9.3\)
Ta có:
\(A=9.10^n+18=9\left(10^n+2\right)\)
\(\Leftrightarrow A⋮9\)
Lại có:
\(10^n+2=10...0+2=10...02\)
\(\Leftrightarrow A⋮3\Rightarrow A=3k\)
\(\Rightarrow A=9.3k=27k\Leftrightarrow A⋮27\)
Vậy \(9.10^n+18⋮27\) (Đpcm)