K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

không thể vì phải phụ thuộc vào n

21 tháng 10 2016

Có trường hợp dược có trường hợp không

20 tháng 10 2016

Giúp với

29 tháng 10 2016

Câu a. Đề​ là cm chia hết cho 2. Tin mình đi có thể sách bạn bị con muỗi đậu vào thêm số 1. Cm nếu n chẵn hiển nhiên. Nếu n lẻ thì (n+13) chẵn chia hét cho =đp cm

​b)7^4=49^2 tận cùng là 1 =>7^4)^n tân cùng 1 =>7^(4n)-1 tân cùng là 0 vậy chia hết cho 5

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

Chiều xuôi:

$m+4n\vdots 13$

$\Rightarrow 3(m+4n)\vdots 13$

$\Rightarrow 13(m+n)-3(m+4n)\vdots 13$

$\Rightarrow 10m+n\vdots 13(1)$

----------------

Chiều ngược:

$10m+n\vdots 13$

$\Rightarrow 13(m+n)-(10m+n)\vdots 13$

$\Rightarrow 3m+12n\vdots 13$

$\Rightarrow 3(m+4n)\vdots 13$

$\Rightarrow m+4n\vdots 13$ (2)

Từ $(1); (2)\Rightarrow m+4n\vdots 13$ khi và chỉ khi $10m+n\vdots 13$

25 tháng 12 2015

m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13

Xét tổng: A = 3m + 12n + 10m + n = 13m + 13n chia hết cho 13

CM theo chiều xuôi (có m + 4n chia hết cho 13, CM 10m + n chia hết cho 13):

A chia hết cho 13

Mà m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13

=> 10m + n chia hết cho 13

CM theo chiều ngược:

A chia hết cho 13

Mà 10m + n chia hết cho 13

=> 3m + 12n chia hết cho 13

=> 3(m + 4n) chia hết cho 13

Mà (3,13) = 1

=> m + 4n chia hết cho 13

Vậy:.

 

 

 

25 tháng 12 2015

Ta có: 10m+n chia hết cho 13

=>10m chia hết cho 13

mà 10 không chia hết cho 13 nên m chia hết cho 13

=>n chia hết cho 13 nên 4n chia hết cho 13

=>m+4n chia hết cho 13

=>đpcm(ghi lại đề)

4 tháng 12 2017

Xét n thuộc một trong cách dạng sau \(3k;3k+1;3k+2\) ( k thuộc N )

Với n = 3k thì \(n.\left(n+8\right).\left(n+13\right)=3k.\left(3k+8\right).\left(3k+12\right)\)chia hết cho 3 

Với n = 3k + 1 thì \(n.\left(n+8\right).\left(n+13\right)=\left(3k+1\right).\left(3k+1+8\right).\left(3k+1+12\right)\)

=\(\left(3k+1\right).\left(3k+9\right).\left(3k+14\right)=\left(3k+1\right).3.\left(k+3\right).\left(3k+14\right)\)chia hết cho 3

Với n = 3k + 2 thì \(n.\left(n+8\right).\left(n+13\right)=\left(3k+2\right).\left(3k+8\right).\left(3k+2+13\right)\)

\(=\left(3k+2\right).\left(3k+10\right).\left(3k+15\right)=\left(3k+2\right).\left(3k+10\right).3.\left(k+5\right)\)chia hết cho 3

Vậy \(n.\left(n+8\right).\left(n+13\right)\)với mọi n

9 tháng 10 2021

Nếu \(n⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)

Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow n+8=\left(n-1\right)+9⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)

Nếu n chia 3 dư 2 \(\Rightarrow n-2⋮3\Rightarrow n+13=\left(n-2\right)+15⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)

\(\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\forall n\in N\)

14 tháng 11 2017

Xét n chẵn => n(n+13) chẵn nên chia hết cho 2

Xét n lẻ => n+13 chẵn => n(n+13) chẵn nên chia hết cho 2

chúc bạn học tốt

^_^ !

8 tháng 10 2017

trả lời giùm tớ ,tớ đang làm bài này

8 tháng 10 2017

Cậu làm xong chưa? Trả lời hộ tớ