K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2022

n x ( n + 1 ) x ( 2n + 1 ) chia hết cho 3

<=> ( n2 + n ) x ( 2n + 1 ) chia hết cho 3

<=> 2n3 + n2 + 2n3 + n chia hết cho 3

Để biểu thức chia hết cho 3 thì từng số hạng trong tổng chia hết cho 3 

=> n chia hết cho 3 .

Vậy với n chia hết cho 3 thì biểu thức đã cho chia hết cho 3

3 tháng 3 2020

a, n - 2 ⋮ n + 1

=> n + 1 - 3 ⋮ n + 1

=> 3 ⋮ n + 1

=> n + 1 thuộc Ư(3)

=> n + 1 thuộc {-1; 1; -3; 3}

=> n thuộc {-2; 0; -4; 2}

b, 2n - 3 ⋮ n - 1

=> 2n - 2 - 1 ⋮ n - 1

=> 2(n - 1) - 1 ⋮ n - 1

=> 1 ⋮ n - 1

=> n - 1 thuộc {-1; 1}

=> n thuộc {0; 2}

c, 3n + 5 ⋮ 2n - 1

=> 6n + 10 ⋮ 2n - 1

=> 6n - 3 + 13 ⋮ 2n - 1

=> 3(2n - 1) + 13 ⋮ 2n - 1

=> 13 ⋮ 2n - 1

=> 2n - 1 thuộc Ư(13)

=> 2n - 1 thuộc {-1; 1; -13; 13}

=> 2n thuộc {0; 2; -12; 14}

=> n thuộc {0; 1; -6; 7}

16 tháng 7 2016

a/ n + 6 = n+ 2 + 4

để n + 6 chia hết cho n + 2 thì n+ 2+4 chia hết cho n+ 2

mà n+ 2 chia hết cho n+ 2

=> 4 chia hết cho n+ 2

=> n+ 2 \(\in\)Ư(4)

mà Ư(4) = {1;2;4}

=> n + 2 \(\in\) {1;2;4}

=> n \(\in\) {-1;0; 2}

mà n \(\in\) N và n là số chia

=> n = 2 phần

b/ bn làm tương tự như vậy nha

ủng hộ mk nha

30 tháng 10 2017

a)

\(n+4⋮n+1\Leftrightarrow\left(n+1\right)+3⋮n+1\)

\(3⋮n+1\)(vì n+1 chia hết cho n+1)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=3\Rightarrow n=2\)

Vậy \(n\in\left\{0;2\right\}\)

b) 

\(2n+3⋮n+1\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(\Rightarrow1⋮n+1\)(vì 2(n+1) chia hết cho n+1)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\)

\(\Rightarrow n+1=1\Rightarrow n=0\)

Vậy \(n=0\)

30 tháng 10 2017

o  a la 125

b la 1524,786

30 tháng 10 2017

a)

(n + 4 ) chia hết ( n + 1 )

(n + 1 ) +3 chia hết ( n + 1 )

vì n+1 luôn chia hết cho n+1 nên để (n + 1 ) +3 chia hết ( n + 1 ) thì 3 cũng phải chia hết cho n+1

=> n+1 thuộc Ư( 3 )

b)

tương tự phần a

cho mk nha

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

3 tháng 1 2022
Three ghosts riding scooters stabbed your mother to death
2 tháng 2 2018

hơi dài đấy 3

a,

2n+1\(⋮\)2n-3

2n-3+4\(⋮\)2n-3

\(_{\Rightarrow}\)4\(⋮\)2n-3

2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)

2n-3124-1-2-4
2n45721-1
n2  1  

vậy n\(\in\)(2;1)

b;

3n+2\(⋮\)3n-4

3n-4+6\(⋮\)3n-4

=>6\(⋮\)3n-4

3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)

3n-41236-1-2-3-6
3n56710321-2
n 3 5 1 -1

vậy n\(\in\)(3;5;-1;1)

19 tháng 10 2017

1) 5 chia hết cho n+1

Suy ra n+1 thuộc Ư(5) bằng {1;5}

n+1 bằng 1 suy ra n bằng 0

n+1 bằng 5 suy ra n bằng 4

Vậy n thuộc {0;4}

2) 7 chia hết cho n+2 

Suy ra n+2 thuộc Ư(7) bằng {1;7}

n+2 bằng 1 (loại)

n+2 bằng 7 suy ra n bằng 5

Vậy n bằng 5.

19 tháng 10 2017

1, \(5⋮n+1\)

\(\Rightarrow n+1\inư\left(5\right)\in\left\{1,5\right\}\)

Ta có bảng:

n+115
n04

Vậy n = 0,4

2, \(7⋮n+2\)

\(\Rightarrow n+2\inư\left(7\right)\in\left\{1,7\right\}\)

Ta có bảng:

n+217
n/5

Vây n = 5

26 tháng 7 2018

a) Ta có :  \(n+3⋮n+2\)

\(\Rightarrow\left(n+2\right)+1⋮n+2\)

Mà  \(n+2⋮n+2\)

\(\Rightarrow1⋮n+2\)

\(\Rightarrow n+2\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)

Ta có bảng sau :

n+21-1
n-1-3

Mà  \(n\in N\)\(\Rightarrow\)ko có giá trị nào của n có thể thỏa mãn đk trên :)

26 tháng 7 2018

b)  \(2n+9⋮n-3\)

\(\Rightarrow2\left(n-3\right)+15⋮n-3\)

Mà  \(2\left(n-3\right)⋮n-3\)

\(\Rightarrow15⋮n-3\)

\(\Rightarrow n-3\inƯ_{\left(15\right)}=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lại có :  \(n\in N\)

Ta có bảng sau :

n-31-13-35-515-15
n4 (tm)2 (tm)6 (tm) 0 (tm)8 (tm)-2 (loại)18 (tm)-12 ( loại )

Vậy  \(n\in\left\{4;2;6;0;8;18\right\}\)