Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI
Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)
Quay lại với bài này:
Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)
Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương
Ta có:\(x\left(x+1\right)=k\left(k+2\right)\)
\(\Rightarrow x^2+x=k^2+2k\)
\(\Rightarrow x^2+x+1=k^2+2k+1\)
\(\Rightarrow x^2+x+1=\left(k+1\right)^2\)
Lại có:
\(x^2+x+1< x^2+2x+1=\left(x+1\right)^2\left(1\right)\) vì \(x\in Z^+\)
\(x^2+x>x^2\left(2\right)\)vì \(x\in Z^+\)
Từ \(\left(1\right);\left(2\right)\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
\(\Rightarrow x^2< \left(k+1\right)^2< \left(x+1\right)^2\)
Do \(\left(k+1\right)^2\) là số chính phương bị kẹp giữa 2 số chính phương liên tiếp nên không tồn tại k;x thỏa mãn đề bài