K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

26 tháng 8 2019

Đáp án D

Ta có

cos α sin α = tan α cos α ⇔ cos 3 α = sin 2 α ⇔ cos 3 α + cos 2 α − 1 = 0  

Giải phương trình bằng máy tính và sử dụng các biển để lưu nghiệm.

Vậy biến  A = cos α

Biến X = cot α  là công bội của cấp số nhân.

Ta có  sin α . X n − 1 = 1 + A ⇔ n = log x 1 + A sin α + 1

 

Vậy ta chọn D

 

14 tháng 9 2018

Đáp án đúng : A

12 tháng 6 2019

21 tháng 11 2019

Đáp án D

4 tháng 4 2017

Đáp án B

30 tháng 9 2019

Đáp án A

Ta có: 1 + x + x 2 n = 1 + x 1 + x n = ∑ k = 0 n C k n x k 1 + x k

= ∑ k = 0 n C n k x k ∑ j = 0 k C j k x k ⇒ T k + 1 = C k n x k ∑ j = 0 k C j k x k

Ta tính các số hạng như sau:

T 0 = 1 ;

T 1 = C n 1 C n 2 x + C n 1 C 1 1 x 2 = n x ; T 2 = C n 2 C n 0 x 2 + C n 2 C 2 1 x 3 + C n 2 C 2 2 x 4 , ....  

Như vậy ta có:

a 3 = C n 2 C 2 1 + C n 3 C 2 0 ; a 4 = C n 2 C 2 2 + C n 3 C 3 1 + C n 4 C 4 0    

Theo giả thiết  

a 3 14 = a 4 41 ⇒ C n 2 C 2 1 + C n 3 C 2 0 14 = C n 2 C 2 2 + C n 3 C 3 1 + C n 4 C 4 0 41

⇔ 2. n n − 1 2 ! + n n − 1 n − 2 3 ! 14 = n n − 1 2 ! + 3 n n − 1 n − 2 3 ! + n n − 1 n − 2 n − 3 4 ! 41

⇔ 21 n 2 − 99 n − 1110 = 0 ⇒ n = 10

Trong khai triển:

1 + x + x 2 10 = a 0 + a 1 x + a 2 x 2 + ... + a 20 x 20

cho x = 1 ta được:  S = a 0 + a 1 + a 2 + ... + a 20 = 3 10

24 tháng 4 2017

Chọn A

11 tháng 10 2017

Đáp án đúng : B

10 tháng 9 2019

22 tháng 5 2017