K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2020

Ta xét: 

\(n^{n-1}-1=\left(n-1\right)\left(n^{n-2}+n^{n-3}+n^{n-4}+...+n^3+n^2+n+1\right)\)

\(=\left(n-1\right)\left(n^{n-2}+n^{n-3}+n^{n-4}+...+n^2+n+1+\left(n-1\right)-\left(n-1\right)\right)\)

\(=\left(n-1\right)\left[\left(n^{n-2}-1\right)+\left(n^{n-3}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(n-1\right)\right]\)\(⋮\left(n-1\right)^2\)

=> \(n^n-n^2+n-1=\left(n^n-n\right)-\left(n^2-2n+1\right)=n\left(n^{n-1}-1\right)-\left(n-1\right)^2\)\(⋮\left(n-1\right)^2\)

22 tháng 6 2016

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

22 tháng 6 2016

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

30 tháng 4 2018

:3 Số 'm' phải là số lẻ nhé cậu 

Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)

Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)

Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)

Do m lẻ nên \(S⋮2018=1009.2⋮1009\)

Vậy \(S⋮1009\)

Mặt khác ta lại có 

\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\)   \(⋮2017\)

=> \(S⋮2017\)

Mà (1009,2017) = 1 

=> \(S⋮2017.1009=......\)

24 tháng 10 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)

hay \(n\left(n-1\right)\left(n+1\right)⋮6\)

23 tháng 9 2016

    n2 ( n + 1) +2n (n + 1 )

       = n (n + 1 ) ( n + 2 )

        Vì n ; n + 1 ; n + 2 là các số tự nhiên liên tiếp

           \(\Rightarrow\) n ( n + 1 ) ( n + 2 ) chia hết cho 6

            Vậy n2 ( n + 1 ) ( n + 2 ) luôn chia hết cho 6 với mọi giá trị của n

23 tháng 9 2016

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
Vậy ta được điều phải chứng minh

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét