K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

Bài làm:

Vì n và 40 là 2 SNT cùng nhau => n và 10 là 2 SNT cùng nhau

=> n sẽ không chia hết cho 2 hoặc 5

=> n là số lẻ

Đặt n = 2k+1 (k là số tự nhiên)

=> n4-1 = (n2-1)(n2+1) = (n-1)(n+1)(n2+1)

Thay n = 2k+1 vô ta được: (2k+1-1)(2k+1+1)(4k2+4k+1+1)

= 2k(2k+2)(4k2+4k+2)

= 8k(k+1)(2k2+2k+1) chia hết cho 8

=> n4-1 chia hết cho 8 (1)

Ta lại đặt n = 5k+1 (k lẻ)

=> n4-1 = (n+1)(n-1)(n2+1) = (5k+1-1)(5k+1+1)(25k2+10k+1)

= 5k(5k+2)(25k2+10k+1) chia hết cho 5

=> n4-1 chia hết cho 5 (2)

Từ (1) và (2) => \(n^4-1⋮8.5=40\)

Vậy \(n^4-1⋮40\)

Mk k chắc bài mk làm đúng nhé!

2 tháng 4 2018

  zdvdz

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
7 tháng 3 2018

+, Nếu n chia 5 dư +-1 thì :

n^2 chia 5 dư 1 => n^2+4 chia hết cho 5

Mà n^2+4 > 5 => n^2+4 là hợp số

+, Nếu n chia 5 dư +-3 thì :

n^2 chia 5 dư 4 => n^2+16 chia hết cho 5

Mà n^2+16 > 5 => n^2+16 lừ hợp số 

=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5

Tk mk nha

16 tháng 6 2021

Chỉnh lại đề đi bạn

21 tháng 3 2022

ok trưởng team

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)