K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2024

+ Với \(n=1\)

\(10^n+18n-1=27⋮27\)

+ Giả sử với \(n=k\) mà

\(10^k+18k-1⋮27\)

+ Ta cần c/m với \(n=k+1\) thì

\(10^n+18n-1=10^{k+1}+18\left(k+1\right)-1⋮27\)

Ta có

\(10^{k+1}+18\left(k+1\right)-1=\)

\(=10.10^k+18k+18-1=\)

\(=\left(10^k+18k-1\right)+9.10^k+18\)

Ta có 

\(9.10^k+18=9.\left(999...9+1\right)+18=\) (có k chữ số 9)

\(=9.\left(9.111...1+1\right)+18=\) (có k chữ số 1)

\(=81.111...1+9+18=3.27.111...1+27=\)

\(=27\left(3.111...1+1\right)⋮27\)

Mà \(10^k+18k-1⋮27\)

\(\Rightarrow10^{k+1}+18\left(k+1\right)-1⋮27\)

Theo nguyên lý phương pháp quy nạp

\(\Rightarrow10^n+18n-1⋮27\forall n\in\)N*

14 tháng 10 2024

\(A=10^n+18n-1\)

\(=\left(10^n-1\right)+18n\)

\(=9999...999+18n\)(n chữ số 9)

\(=9\left(1111...1+2n\right)⋮9\)(n chữ số 1)

Tổng các chữ số của 1111...1+2n là:

2n+n=3n chia hết cho 3

=>\(A=9\left(1111...1+2n\right)⋮9\cdot3\)

=>\(A⋮27\)

24 tháng 1 2017

10n+18n-1

=10n-1-9n+27n

=999..9-9n+27n

=9(11...1-n)+81n chia hết cho 27.

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

6 tháng 4 2016

 Câu trả lời hay nhất:  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

6 tháng 6 2021

Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

14 tháng 3 2015

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)