Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạng thứ n của dãy là:n(n+1)/2
Số hạng thứ n-1 của dãy là:(n-1)n/2
Ta có:(n-1)n/2+n(n+1)/2=(n^2-n)/2+(n^2+n)/2
=(2n^2)/2=n^2
Vì n thuộc N nên n^2 là số chính phương
Vậy tổng 2 số hạng liên tiếp của dãy là số chính phương.
Ta xét tổng hai số
(n-1)×n/2 + n×(n+1)/2
=> (n-1)×n+n×(n+1) /2
=>n×[(n-1)×(n+1)] /2
=>n×2n /2
=> 2×n2 /2
=> n2
bài toán được chứng minh
Số hạng thứ n là \(\frac{n\left(n+1\right)}{2}\)
Tổng 2 số liên tiếp của dãy là \(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\left(2n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\left(n+1\right).2}{2}\)
\(=\left(n+1\right)^2\)
Do đó tổng 2 số liên tiếp của dãy là số chính phương.
Xét tổng 2 số hạng liên tiếp của dãy:
(n-1)n/2+n(n+1)/2=(n^2-n+n^2+n)/2=(2n^2)/2=n^2 là số chính phương(n thuộc N)
bạn thử chọn số khác đi như \(\frac{n\left(n+2\right)}{2}\)nó đâu có ra
a) \(n=a^2+b^2\)
\(2n=2a^2+2b^2=a^2+b^2-2ab+a^2+b^2+2ab=\left(a-b\right)^2+\left(a+b\right)^2\)
b) \(2n\)là số chẵn nên hai số chính phương có tổng là \(2n\)cùng tính chẵn lẻ.
\(2n=\left(a-b\right)^2+\left(a+b\right)^2\)
\(\Rightarrow n^2=a^2+b^2\)
c) \(n^2=\left(a^2+b^2\right)^2=a^4+2a^2b^2+b^4=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
4m2+m=5n2+n
{=}5m2+m=5n2+n+m2
{=}5(m2-n2)+(m-n)=m2
{=}(m-n)(5m+5n+1)=m2
ra đề ngu
A^2 là chính phương của A đó chứng minh cái gì nửa
A ko phải chính phương của 1 số nào đâu
Vd:A=13=4+9
\(n=a^2+b^2\)
\(\Rightarrow n^2=\left(a^2+b^2\right)^2-4a^2b^2+4a^2b^2=\)
\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)+\left(2ab\right)^2=\)
\(=\left(a-b\right)^2\left(a+b\right)^2+\left(2ab\right)^2=\)
\(=\left[\left(a-b\right)\left(a+b\right)\right]^2+\left(2ab\right)^2=\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)