K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

\(n\in N\) và n ko chia hết cho 3 nên n có dạng n = 3k + 1 hoặc n = 3k + 2 \(\left(k\in N\right)\)

Nếu n = 3k + 1

thì \(n^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\)

Nếu n = 3k + 2

thì \(n^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\)

8 tháng 10 2017

Bài 45 :

a ) Theo bài ra ta có :

a = 9.k + 6

a = 3.3.k + 3.2

\(\Rightarrow a⋮3\)

b ) Theo bài ra ta có :

a = 12.k + 9 

a = 3.4.k + 3.3

\(\Rightarrow a⋮3\)

Vì : \(a⋮3\Rightarrow a⋮6\)

c ) Ta thấy :

30 x 31 x 32 x ...... x 40 + 111

= 37 x 30 x ....... x 40 + 37 x 3

\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)

Bài 46 :

a ) số thứ nhất là n số thứ 2 là n+1 
tích của chúng là 
n(n+1) 
nếu n = 2k ( tức n là số chẵn) 
tích của chúng là 
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là 
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn 

Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2

b ) Nếu n là số lẻ thì : n + 3 là số chẵn 

Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2

Nếu n là số chẵn thì :

n . ( n + 3 ) luôn chi hết cho 2 

c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6 

Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7

Vì 1 ; 3 ; 7 không chia hết cho 2 

Vậy n2 + n + 1 không chia hết cho 2 

27 tháng 7 2015

1. gọi 3 stn liên tiếp là n,n+1,n+2

ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3

2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3

ta có n+n+1+n+2+n+3 = 4n+6 

vì 4n ; hết cho 4 mà 6 : hết cho 4

=> 4n+6 ko : hết cho 4

3. gọi 2 stn liên tiếp đó là a,b

ta có a=5q + r

b=5q+r

a-b = ( 5q +r) - (5q1+r)

= 5q - 5q1

= 5(q-q1) : hết cho 5

29 tháng 12 2015

Ta có ;  n^3 +11n - 6

     =(n^3 - n)+(12n - 6)

     =n(n^2 - 1)+6(2n - 1)

     =n(n - 1)(n + 1)+6(2n - 1)

 Vì n(n - 1)(n + 1) là tích 3 số nguyên liên tiếp .

   Suy ra : n(n - 1)(n +1) chia hết cho 6

Mà 6(2n - 1) chia hết cho 6 

 Nên n(n - 1)(n +1)+6(2n - 1) chia hết cho 6

Vậy .......

13 tháng 10 2016

THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !

13 tháng 10 2016

1 / 

B = 15 + 17 - 16

B = 16

mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra

2 / 

 a ) N = 1 đó

 b ) N = 1 đó

cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1

còn lại tương tự nhé !

mình còn làm violympic nữa

3 tháng 9 2015

 

1)Vì tổng của 2 số đó không chia hết cho 2

=>Tổng của chúng là số lẻ

=>Không thể cả 2 số đều cùng chẵn hoặc cùng lẻ

=>Có 1 số chẵn và 1 số lẻ

=>Tích của chúng là số chẵn(vì số nào nhân với số chẵn đều được tích là số chẵn)

=>Tích của chúng chia hết cho2

2)Ta có: a+a2=a.(a+1)

Vì a là số tự nhiên

=>a có 2 dạng là 2k hoặc 2k+1

Xét a=2k=>a.(a+1)=2k.(a+1) chia hết cho 2

=>a+a2 chia hết cho 2(1)

Xét a=2k+1=>a.(a+1)=a.(2k+1+1)=a.(2k+2)=a.(k+1).2 chia hết cho 2

=>a+a2 chia hết cho 2(2)

Từ (1) và (2) ta thấy: a+a2 chia hết cho 2

=>ĐPCM

8 tháng 10 2016

mình biết cách làm

đó mai mình 

chỉ cho nhé vì

mình cũng làm bài

này nhiều rùi

16 tháng 10 2016

Bài này mik cũng làm nhiều rùi nè

15 tháng 8 2016

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2

Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2

Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2

Bài 4 bạn ghi thiếu đề

16 tháng 8 2016

1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số  chia hết cho 5 ?

2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?

3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?

4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:

$a$ chia 3 dư 1 nên $a$ có dạng $a=3k+1$ với $k\in\mathbb{N}$

$b$ chia $3$ dư 2 nên $b$ có dạng $b=3m+1$ với $m\in\mathbb{N}$

$\Rightarrow a+b=3k+1+3m+2=3k+3m+3=3(k+m+1)\vdots 3$