K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Chứng minh A là phân số tối giản

Gọi d=ƯCLN(n+1;2n+3)

=>\(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(2n+3-2n-2⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n+1;2n+3)=1

=>\(A=\dfrac{n+1}{2n+3}\) là phân số tối giản

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

15 tháng 1 2016

giải ra giúp mình tại sao lại nó lại có ƯCLN=1