Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{1}{9}\times27^n=3^n\)
\(\Rightarrow\frac{1}{3^2}\times\left(3^3\right)^n=3^n\)
\(\Rightarrow3^{-2}\times3^{3n}=3^n\)
\(\Rightarrow3^{-2+3n}=3^n\)
\(\Rightarrow-2+3n=n\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=1\)
2) \(32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
\(\Rightarrow5< n< 7\)
\(\Rightarrow n=6\)
3) \(2\times16\ge2^n>4\)
\(\Rightarrow32\ge2^n>4\)
\(\Rightarrow2^5\ge2^n>2^2\)
\(\Rightarrow\)\(5\ge n>2\)
\(\Rightarrow n\in\left\{5;4;3\right\}\)
bài này của lớp 6 mà ghi lớp 5 !!!!!! * 0 *
65856979
m^2 + 4m +7 không chia hết (kch) cho 4
==> m^2 + 4m +7 chia hết cho 2 hoặc 4
mà 4m luôn chia hết cho 2
==> m^2 chia hết cho 2
==> m bắt buộc là số chia hết cho 2
*Lưu ý: Mình chỉ gợi ra hướng làm giúp bạn thui, đừng chép nguyên si vào nhé :v
Chúc bạn học tốt!
\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)
\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}\)
\(=1+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=1+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2-\dfrac{2}{n+1}\) ko là số tự nhiên
Nếu nn chẵn thì cái tổng chia hết cho 2
Nếu nn lẻ thì
Phân tích nhân tử
Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)
Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được
Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1
Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )
BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3
Vậy, ta có điều phải chứng minh