Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Cho mình làm lại nha :
Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn)
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Tổng của 5 số nguyên dương liên tiếp có dạng: \(\frac{\left(a+a+4\right)\cdot5}{2}=5\left(a+2\right)⋮5\)
(a và a+4 là số đầu và số cuối khi xếp từ bé đến lớn)
Làm tương tự với tổng của 7 số và 9 số
Suy ra số cần tìm chia hết cho 5,7,9
Mà BCNN(5,7,9)=315 nên số cần tìm là 315
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
c) Gọi 2 số đó là n và n +1
n + (n+1) = 2n + 1 không chia hết cho 2
d) Tương tự : 3 số đó là n ; n+1 ; n +2
n + n + 1 + n + 2 = 3n + 3 chia hết cho 3
e) n + n + 1 + n + 2 + n + 3 = 4n+5 không chia hết cho 4