K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Coi a là số tự nhiên nhỏ nhất

Bài 1 Khi  chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3  suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6

  hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)

 Suy ra BCNN(3,4,5,6)=32. 23.5=360

           BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)

          a thuộc(358;718;1078,..)

Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078

4 tháng 2 2019

Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0) 

                                                                                                         3n    =(...9)   (số tận cùng của 3n=9)

   Ta có 3n+4+1=3n.34+1

                        =(...9).(...1) +1

                       =  (...0) Vậy 3n+4+1 có tận cùng là 0

Suy ra 3n+4+1 là bội của 10

4 tháng 3 2019

Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1  (1)

Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1.  (2)

Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:

\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)

Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)

Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)

Từ (1),(2) và (3) ta có đpcm.

11 tháng 9 2016

Ta có: A = 1 + 3 + 3+ 3+....+ 310

=> 3A = 3 + 32 + 33 + 34 + ..... + 311

=> 3A - A = 311 - 1

=> 2A = 311 - 1

=> 2A + 1 = 311

=> n = 11

13 tháng 12 2017

đồ ngu =200004

13 tháng 12 2017

n2 + n + 1

= n . n + n + 1

= n . ( n + 1 ) + 1

Do n . ( n + 1 ) là hai số  liên tiếp => có tận cùng là : 0;2;6

=> n . ( n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7 không chia hết cho 2

Vậy n2.n+1 không chia hết cho 2

24 tháng 7 2015

1)

a)

=10...0+5

=10..05 chia hết cho 5

=1+0+5=6 chia hết cho3

b)10...0+44

=10...04 chia hết cho 2

=1+0+0+4+4=9 chia hết cho 9

 

23 tháng 12 2017

n là stn => n= 3k hoặc n=3k + 1 hoặc n= 3k + 2                         (k thuộc N)

với n=3k

​ ta có : 3k ( 3k + 1) (3k +5)

3k chia hết 3 => 3k ( 3k + 1) ( 3k + 5) chia hết cho 3

hay: n(n+1)(n+5) chia hết cho 3

với n=3k+1

ta có : (3k+1)(3k+1+1)(3k+1+5)

         =(3k+1)(3k+2)(3k+6)

         =3(3k+1)(3k+2)(k+2) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

với n= 3k+ 2

ta có : (3k+2)(3k+2+1)(3k+2+5)

         =(3k+2)(3k+3)(3k+7)

         =3(3k+2)(k+1)(3k+7) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

Vậy với mọi stn n thì n(n+1)(n+5) chia hết cho 3

3 tháng 6 2017

Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)

\(=99...9-9n+27n\)( n c/s 9 )

\(=9\left(11...1-n\right)+27n\)( n c/s 1 )

Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)

Mà : \(27n⋮27\Rightarrow A⋮27\)

Vậy ...

3 tháng 6 2017

Ta có :

\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)

Ta có công thức :

\(a^m-b^m⋮a-b\) với mọi a;b thuộc R

\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)