Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
1,
Vì n là số tự nhiên nên n có dạng 2k hoặc 2k+1(k là số tự nhiên)
TH1:n=2k=>n+10 chia hết cho 2 (1)
TH1:n=2k+1=>n+15 chia hết cho 2 (2)
Từ (1),(2)=>(n+10)(n+15) chia hết cho 2
2,
Vì n là số tự nhiên nên n,n+1,n+2 là 3 số tự nhiên liên tiếp
=>n(n+1)(n+2) chứa ít nhất 1 bội của 2 và chứa 1 bội của 3
=>đccm
Mấy bài trước mk lm mà bn đâu có **** cho mk bây giờ mk sẽ ko lm cho bn