K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2019

\(n=2k+1\)

\(\Rightarrow A=1+2.4^k+3.9^k+4.16^k+5.25^k\)

- Ta có: \(4\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2mod\left(3\right)\)

\(16\equiv1\left(mod3\right)\Rightarrow4.16^k\equiv1\left(mod3\right)\)

\(25\equiv1\left(mod3\right)\Rightarrow5.25^k\equiv2\left(mod3\right)\)

\(\Rightarrow A\equiv\left(1+2+1+2\right)\left(mod3\right)\Rightarrow A⋮3\)

Tương tự ta có:

\(A\equiv\left(1+-2-3+4\right)\left(mod5\right)\Rightarrow A⋮5\)

Mà 3 và 5 nguyên tố cùng nhau \(\Rightarrow A⋮15\)

21 tháng 6 2017

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

23 tháng 8 2017

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

22 tháng 12 2018

Dễ chứng minh m,n đều là số lẻ (sử dụng phản chứng vs n,m đều chẵn, 1 trong 2 số chẵn). Vậy ta có hđt mở rộng:

\(3^m+5^m+3^n+5^n=\left(3+5\right)\left(3^{m-1}-3^{m-2}.5+...\right)+\left(3+5\right)\left(3^{n-1}-3^{n-2}.5+...\right)\)

\(=8A+8B\)

=> \(3^n+5^m=8A+8B-3^m-5^n\)

=> \(3^n+5^m\)chia hết cho 8. d0pcm