K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

Đặt \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{n^2}\)

Có \(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{\left(n-1\right).n}\)

\(< -1.\left(\frac{1}{n}\right)< 1.\left(\frac{1}{n}\right)>0\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{n^2}< \frac{1}{1^2}+1< \orbr{\begin{cases}1+1\\2\end{cases}}\)

Vậy ta có điều phải chứng tỏ

22 tháng 4 2017

\(\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\left(n\in N^#\right)\)

Có  \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{\left(n-1\right)n}\)

                                            \(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

                                            \(< 1-\frac{1}{n}< 1\left(\frac{1}{n}>0;n\in N^#\right)\)

\(\Rightarrow\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1^2}+1\)

                                                      \(< 1+1\)

                                                      \(< 2\)

\(\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{n\left(n+1\right)}\)

                                                 \(>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

                                                 \(>1-\frac{1}{n+1}>1\)

\(1< \frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

\(\Rightarrow\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không phải là số tự nhiên

22 tháng 4 2017

Cảm ơn nha

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)

Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\left(2\right)\)

Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

\(\Rightarrowđpcm\)

21 tháng 7 2021

undefinedk cho

  • mk nha cảm ơn

các bn nhé!!!!

5 tháng 12 2023

H-E-L-P-M-E

5 tháng 12 2023

 Trước tiên, ta thấy \(\left(n+1\right)\left(n+2\right)...\left(n+5\right)\) là tích của 5 số tự nhiên liên tiếp nên tích này chia hết cho 5. Do đó A chia 5 dư 2.

 Ta sẽ chứng minh một số chính phương (bình phương của một số tự nhiên \(k\)) không thể chia 5 dư 2. Thật vậy:

 Nếu \(k⋮5\Rightarrow k^2⋮5\)

 Nếu \(k\) chia 5 dư 1 hay -1 (tức là dư 4) thì đặt \(k=5l\pm1\left(l\inℕ\right)\) \(\Rightarrow k^2=\left(5l\pm1\right)^2=25l^2\pm10l+1\) chia 5 dư 1.

 Nếu \(k\) chia 5 dư 2 hay -2 (tức là dư 3) thì đặt \(k=5l\pm2\left(l\inℕ\right)\) thì \(k^2=\left(5l\pm2\right)^2=25l^2\pm20l+4\) chia 5 dư 4.

 Vậy một số chính phương không thể chia 5 dư 2. Thế nhưng theo cmt, A chia 5 dư 2. Điều này có nghĩa là A không phải bình phương của bất kì số nguyên nào. (đpcm)

5 tháng 12 2023

2