\(\dfrac{1.4}{2.3}+\dfrac{2.5}{3.4}+\dfrac{3.6}{4.5}+...+\dfrac{98.101}{99.100}\)C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Ta có 1.4/2.3=(2-1)(3+1)/2.3=1-1/2+1/3-1/2.3

2.5/3.4=(3-1)(4+1)/3.4=1-1/3+1/4-1/3.4

...

Suy ra N=(1-1/2+1/3-1/2.3)+(1-1/3+1/4-1/3.4)+....+(1-1/99+1/100-1/99.100)

N=\(98+\dfrac{1}{100}-\dfrac{1}{2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-....-\dfrac{1}{99.100}\)

Xét P=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)

P=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

P=\(\dfrac{1}{2}-\dfrac{1}{100}\)

Vậy N=98-1+\(\dfrac{1}{50}\)

N=\(97+\dfrac{1}{50}\)

Vậy 97<N<98(ĐPCM)

3 tháng 1 2018

N = 1 - 2/2.3 + 1 - 2/3.4 +.....+ 1 - 2/99.100

   = 98 - 2.(1/2.3 + 1/3.4 + ...... + 1/99.100)

   = 98 - 2.(1/2-1/3+1/3-1/4+....+1/99-1/100)

   = 98 - 2.(1/2-1/100)

   = 98 - 2.49/100 = 98-49/50 < 98

Mà 49/50 < 1

=> N > 98-1 = 97

=> 97 < N < 98

Tk mk nha

3 tháng 4 2016

giải chưa nhở

2 tháng 7 2017

mk cx đg cần giải bài này

16 tháng 6 2018

Ta có \(\frac{a\left(a+3\right)}{\left(a+1\right)\left(a+2\right)}=\frac{\left(a+1-1\right)\left(a+2+1\right)}{\left(a+1\right)\left(a+2\right)}=\frac{\left(a+1\right)\left(a+2\right)-\left(a+2\right)+\left(a+1\right)-1}{\left(a+1\right)\left(a+2\right)}\\ \)

\(1-\frac{2}{\left(a+1\right)\left(a+2\right)}\)

Áp dụng ta có N = \(98-\left(\frac{2}{2.3}+...+\frac{2}{99.100}\right)=98-2.\left(\frac{1}{2.3}+...+\frac{1}{99.100}\right)=98-2.\left(\frac{1}{2}-\frac{1}{100}\right)>97\)

7 tháng 3 2020

\(A=\frac{4}{6}+\frac{10}{12}+\frac{18}{20}+...+\frac{9898}{9900}\)

\(A=1-\frac{2}{6}+1-\frac{2}{12}+1-\frac{2}{20}+...+1-\frac{2}{9900}\)

\(A=98-\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\right)\)Đặt Biểu thức trong ngoặc đơn là B

\(\Rightarrow A=98-B\)

\(\Rightarrow\frac{B}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\frac{B}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)

\(\frac{B}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow B=\frac{2.49}{100}=\frac{98}{100}\)

Ta nhận thấy \(B=\frac{98}{100}< 1\Rightarrow A=98-\frac{98}{100}=97+\frac{2}{100}\)

\(\Rightarrow97< A< 98\left(dpcm\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2024

Lời giải:

$M=\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+...+\frac{98.101}{99.100}$

$=1-\frac{2}{2.3}+1-\frac{2}{3.4}+1-\frac{2}{4.5}+...+1-\frac{2}{99.100}$

$=(1+1+....+1)-2(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100})$

$=98-2(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100})$

$=98-2(\frac{1}{2}-\frac{1}{100})$

$=97+\frac{1}{50}=97,02$