Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{n+4}-7^n=7^n.7^4-7^n=7^n.\left(7^4-1\right)=7^n.2400\) chia hết cho 30
\(=125+\left(81+4\right).2+\left(27-3\right):4\)
\(=125+85.2+\left(27-3\right):4\)
\(=125+85.2+24:4\)
\(=125+170+24:4\)
\(=125+170+6\)
\(=295+6\)
\(=301\)
Bài 1: Mình không biết làm.
Bài 2:
TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)
=> (n+20102011) chia hết cho 2.
Nên (n+20102011)(n+2011) chia hết cho 2
TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)
=> n + 2011 chia hết cho 2
Nên (n+20102011)(n+2011) chia hết cho 2
Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N
\(=3^{n+2}+3^n-2^{n+2}-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=10.3^n-2.2^{n-1}.5=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)
Chia hết cho 10
(l ike nha)
gọi chư số tận cùng của n là a => n5=.......a => n5-n=......a-....a=........0 chia hết cho 5
Câu 2:
25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04
= 20,04(25 + 75 - 2003 + 2004)
= 20,04.101 = 2024,04
C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)
\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)
mấy câu kia mình lười làm lắm bạn
Chúc bạn học tốt!^_^
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
Ta có:
9999931999 = 9999931996 . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )
\(\Rightarrow\) 9999931999 có tận cùng là 7
5555571997 = 555557 . 5555571996 = 555557 . ( 5555574 )499 = 555557 . ( ....1)499
=> 5555571997 có tận cùng là 7
A = 9999931999 - 5555571997
A = ( .....7 ) - ( .....7 )
A= ( .....0)
=> A có tận cùng là 0
=> \(A⋮5\)
Bài 3 :
Cách 1 :
Ta có:
A = 99999311999- 5555571997
= 9999931998 .999993 - 5555571996 . 555557
= (9999932)999 .999993 - (5555572 ) 998 . 555557
=(...9)999 .999993 - (...9)998 .555557
= (...9). 999993 - (...1).555557
=(...7)-(...7) =(...0)
Chữ số tận cùng của A= 9999931999 -5555531997 là 0.
=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.
+ Với \(n=1\Rightarrow\left(7^n+1\right)\left(7^n+2\right)=8.9⋮3\)
+ Giả sử có \(A=\left(7^k+1\right)\left(7^k+2\right)=7^{2k}+3.7^k+2⋮3\) Ta cần c/m \(B=\left(7^{k+1}+1\right)\left(7^{k+1}+2\right)⋮3\)
Ta có
\(B=7^{2k+2}+3.7^{k+1}+2=7^2.7^{2k}+3.7.7^k+2\)
\(B=\left(7^{2k}+3.7^k+2\right)+48.7^{2k}+18.7^k=A+3\left(16.7^{2k}+6.7^k\right)\)
Ta có \(A⋮3;3\left(16.7^{2k}+6.7^k\right)⋮3\Rightarrow B⋮3\)
\(\Rightarrow\left(7^n+1\right)\left(7^n+2\right)⋮3\forall n\)
(Dùng phương pháp quy nạp)