K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4,Tìm a, b N, biết:

a,10a+168=b2

b,100a+63=b2

c,2a+124=5b

d,2a+80=3b

 Giải:

a) xét \(a=0\)

\(\Rightarrow10^a+168=1+168=169=13^2\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)

xét \(a\ne0\)

=>10a có tận cùng bằng 0

Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9  )

=>không có b

vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)

b)Chứng minh tương tự câu a)

c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5

\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5

Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0

ta có :

2^0 + 124 = 5^b

=> 125 = 5^b

=> 5^3 = 5^b

=> b = 3

Vậy a = 0 ; b =3

d)Chứng minh tương tự như 2 câu mẫu trên

3,Cho B=34n+3+2013

Chứng minh rằng B10 với mọi nN

Giải:

Ta có : 

34n+3+2013

=(34)n+27+2013

=81n+2040

Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc

12 tháng 2 2017

n*32=33+35+...+32n+1

lấy n*32 - n = 32n+1-3

<=> 8n= 32n+1-3

<=>n= (32n+1-3)/8 tận cùng là (7-3)/8 tận cùng là 3 hoặc 8

26 tháng 10 2020

a) Ta có: \(\hept{\begin{cases}\left(3n+8\right)⋮\left(2n+1\right)\\\left(2n+1\right)⋮\left(2n+1\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(3n+8\right)⋮\left(2n+1\right)\\3\left(2n+1\right)⋮\left(2n+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(6n+16\right)⋮\left(2n+1\right)\\\left(6n+3\right)⋮\left(2n+1\right)\end{cases}}\) Trừ 2 vế đi ta được:

\(\Rightarrow\left(6n+16\right)-\left(6n+3\right)⋮\left(2n+1\right)\)

\(\Leftrightarrow13⋮\left(2n+1\right)\Rightarrow\left(2n+1\right)\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)

\(\Leftrightarrow2n\in\left\{-14;-2;0;12\right\}\)

\(\Rightarrow n\in\left\{-7;-1;0;6\right\}\)

Vậy \(n\in\left\{-7;-1;0;6\right\}\)

b) Ta có:

\(S=3+3^2+3^3+3^4+...+3^{2020}\)

\(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2017}+3^{2018}+3^{2019}+3^{2020}\right)\)

\(S=3\cdot\left(1+3+3^2+3^3\right)+...+3^{2017}\cdot\left(1+3+3^2+3^3\right)\)

\(S=3\cdot40+...+3^{2017}\cdot40\)

\(S=\left(3+...+3^{2017}\right)\cdot40\) chia hết cho 40