\(M=x^2-3xy-2y^2;N=-5x^2+xy+y^2;P=-5x^2-4xy-2y^2\)

Tính M + N - P

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2023

\(M+N-P=\left(x^2-3xy-2y^2\right)+\left(-5x^2+xy+y^2\right)-\left(-5x^2-4xy-2y^2\right)\\ \Rightarrow x^2-3xy-2y^2-5x^2+xy+y^2+5x^2+4xy+2y^2\\ \Rightarrow x^2+2xy+y^2\)

11 tháng 5 2017

Bài 5:Giải:

Ta có: \(\left\{{}\begin{matrix}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow a=2016-3c\)

Lấy \(\left(2\right)-\left(1\right)\) ta được:

\(2b-3c=1\Leftrightarrow b=\dfrac{1+3c}{2}\)

Khi đó:

\(P=a+b+c=\left(2016-3c\right)+\dfrac{1+3c}{2}\) \(+\) \(c\)

\(=\left(2016+\dfrac{1}{2}\right)+\dfrac{-6c+3c+2c}{2}\)

\(=2016\dfrac{1}{2}-\dfrac{c}{2}\)\(a,b,c\ge0\) nên:

\(P=2016\dfrac{1}{2}-\dfrac{c}{2}\le2016\dfrac{1}{2}\)

Vậy \(P_{max}=2016\dfrac{1}{2}\Leftrightarrow c=0\)

Bài 1: 

a: =>13x+8=9x+20

=>4x=12

hay x=3

b: \(\Leftrightarrow5x-7=-8-11-3x\)

=>5x-7=-3x-19

=>8x=-12

hay x=-3/2

c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)

e: =>3x+1=-5

=>3x=-6

hay x=-2

9 tháng 8 2017

\(x^2+y^2=2011\) (1)

Nhận xét:

\(x^2-\text{và}-y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1\)

\(\Rightarrow x^2+y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1-\text{hoặc}-2\)

\(\text{mà}-2011-chia-cho-4-\text{dư}-3\)

=> Pt (1) vô no nguyên.

\(x^2+x-2y-4y^2=-7\) (2)

\(\Leftrightarrow4x^2+4x-8y-16y^2=-28\)

\(\Leftrightarrow\left(4x^2+4x+1\right)-\left(16y^2+8y+1\right)=-28\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(4y+1\right)^2=-28\)

\(\Leftrightarrow\left(2x+1-4y-1\right)\left(2x+1+4y+1\right)=-28\)

\(\Leftrightarrow\left(x-2y\right)\left(x+2y+1\right)=-28\)

Xét các trường hợp có thể xảy ra, và tìm được các no thoả mãn pt (2)

Pt (1) vô n0 nguyên là j đây bn? bn viết rõ ra xem nào