Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
= 1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+.....+\(\frac{1}{49^2}\)+\(\frac{1}{50^2}\)<1+ \(\frac{1}{1\times2}\)+\(\frac{1}{2\times3}\)+....+\(\frac{1}{49\times50}\)
= 1+ 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + ..... + \(\frac{1}{49}\) - \(\frac{1}{50}\)
= 1+ 1 - \(\frac{1}{50}\)
= 1+ \(\frac{49}{50}\) < 2
Chứng tỏ A < 2
Tóm tắt:
s1 = s2
v1 = 15 km/h
v2 = 10 km/h
__________
vtb = ? (km/h)
Giải:
Thời gian trên nửa quãng đường đầu:
\(v_1=\frac{s_1}{t_1}\Rightarrow t_1=\frac{s_1}{v_1}=\frac{s_1}{15}\left(h\right)\)
Thời gian trên nửa quãng đường sau:
\(v_2=\frac{s_2}{t_2}\Rightarrow t_2=\frac{s_2}{v_2}=\frac{s_1}{10}\left(h\right)\)
Vận tốc trung bình trên cả quãng đường AB:
\(v_{tb}=\frac{s_1+s_2}{t_1+t_2}=\frac{s_1+s_1}{\frac{s_1}{15}+\frac{s_1}{10}}=\frac{2s_1}{s_1\left(\frac{1}{15}+\frac{1}{10}\right)}=\frac{2}{\frac{1}{6}}=12\) (km/h)
ĐS: 12 km/h
tóm tắt: v1=15km/h BL
v2=10km/h Vận tốc trung bình người đó đi trên cả quãng đường AB là:
vtb=? vtb=( 2*v1*v2 ) / ( v1 + v2) =(2*15*10) / (15+10)=12 km/h
Vậy vận tốc trung bình trên cả quãng đường AB là 12 km/h