Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng diện tích thửa ruộng ông An là
A = a2 + b2 + c2
Tổng diện tích thửa ruộng ông Bình là
B = ab + bc + ca
Xét hiệu A - B ta có
A - B = a2 + b2 + c2 - ab - bc - ca
=> 2(A - B) = 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2ca
=> 2(A - B) = (a2 - 2ab + b2) + (b2 - 2ac + c2) + (a2 - 2ac + c2)
=> 2(A - B) = (a - b)2 + (b - c)2 + (a - c)2 \(>0\)(vì a > b > c)
=> A - B > 0
=> A > B
Vậy ông An có nhiều ruộng hơn ông Bình
\(\text{Diện tích thửa ruộng của ông An là:}\)
\(A=a^2+b^2+c^2\)
\(\text{Tổng diện tích thửa ruộng của ông Bình là:}\)
\(B=ab+bc+ca\)
\(\text{Xét hiệu của a-b ta có:}\)
\(a-b=a^2+b^2+c^2-ab-bc-ca\)
\(\Rightarrow2\left(A-B\right)=2a^2+2b^2+2c^2-2ab-2ac-2ca\)
\(\Rightarrow a\left(A-B\right)=\left(a^2-2ab+b^2\right)+\left(b^2-2ac+c^2\right)+\left(a^2-2ac+c^2\right)\)
\(\Rightarrow2\left(A-B\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>0\left(\text{vì:}a>b>c\right)\)
\(\Rightarrow A-B< 0\)
\(\Rightarrow A>B\)
\(\text{Từ trên}\Rightarrow\)
\(\text{Ông An có nhiều ruộng hơn ông Bình}\)
\(\text{Hok tốt!}\)
\(\text{@Kaito Kid}\)
Xin lỗi các bạn, thùng thứ nhất của ông D có đáy là hình vuông cạnh x, chiều cao y và thùng thứ hai có đáy là hình vuông cạnh y, chiều cao x. Đề nhầm.
Tổng thể tích rượu ông Cường có là
\(C=x^3+y^3\)
Tổng thể tích rượu ông Dũng là
\(D=x^2y+y^2x\)
Xét hiệu C - D ta có
C - D = x3 + y3 - x2y - y2x
= x2(x - y) + y2(y - x)
= (x - y)(x2 - y2)
= (x - y)2(x + y) > 0 (Vì x > y > 0)
=> C> D
Vậy ông Cường có nhiều rượu hơn ông Dũng
Bài 1 :
Một mảnh đất hình chữ nhật có chu vi 40m. Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 2m thì diện tích tăng thêm 4m. Tính chiều dài và chiều rộng của mảnh vườn
chiều dài x, rộng y
2(x+y)=40 => x+y=20 (1)
diện tích S=xy
=> (x-2)(y+2) - xy=4
<=> 2x-2y= 8 (2)
từ (1) và (2) có hệ pt, giải hệ => x=12, y =8
Bài 1
chiều dài x, rộng y
2(x+y)=40 => x+y=20 (1)
diện tích S=xy
=> (x-2)(y+2) - xy=4
<=> 2x-2y= 8 (2)
từ (1) và (2) có hệ pt, giải hệ => x=12, y =8
Vì c là cạnh huyền
=> \(c>a;c>b\)=> \(c^{n-2}>a^{n-2};c^{n-2}>b^{n-2}\)
Ta có \(c^2=a^2+b^2\)
=> \(c^n=a^2.c^{n-2}+b^2.c^{n-2}>a^2.a^{n-2}+b^2.b^{n-2}=a^n+b^n\)với n>2 (ĐPCM)
Vậy \(c^n>a^n+b^n\)
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm
Diện tích hình vuông cạnh c là \(S=c^2\)
Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)
Xét tg vuông có \(c^2=a^2+b^2\)
Áp dụng cosi có
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)
\(\Rightarrow S\ge S_1\left(dpcm\right)\)
\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân